Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Henry Royce Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Philos Trans A Math Phys Eng Sci. 2021 Sep 20;379(2206):20200331. doi: 10.1098/rsta.2020.0331. Epub 2021 Aug 2.
Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex light scattering and polarization as well as unique mechanical properties. In doing so, chitin uses a fine balance between the highly ordered chain conformations in the nanofibrils and random disordered structures. In this opinion piece, we discuss the structural hierarchy of chitin, its crystalline states and the natural biosynthesis processes to create such specific structures and diversity. Among the examples we explored, the unified question arises from the generation of completely different bioarchitectures like the Christmas tree-like nanostructures, gyroids or helicoidal geometries using similar dynamic non-equilibrium growth processes. Understanding the development of such structures from gene expressions, enzymatic activities as well as the chemical matrix employed in different stages of the biosynthesis will allow us to shift the material design paradigms. Certainly, the complexity of the biology requires a collaborative and multi-disciplinary research effort. For the future's advanced technologies, using chitin will ultimately drive many innovations and alternatives using biomimicry in materials science. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
几丁质是最丰富的生物聚合物之一,它通过结合生物聚合、结晶和非平衡自组装等不同的自然过程,采用了许多不同的结构构象。这导致了许多显著的物理效应,如复杂的光散射和偏振以及独特的机械性能。在这样做的过程中,几丁质在纳米纤维中高度有序的链构象和随机无序结构之间保持着微妙的平衡。在这篇观点文章中,我们讨论了几丁质的结构层次、其晶体状态以及自然生物合成过程,以创造出这种特定的结构和多样性。在我们探索的例子中,一个统一的问题是,使用类似的动态非平衡生长过程,如何产生完全不同的生物建筑,如圣诞树状纳米结构、回转体或螺旋几何形状。了解从基因表达、酶活性以及生物合成不同阶段所使用的化学基质中产生这种结构的过程,将使我们能够改变材料设计的范例。当然,生物学的复杂性需要协作和多学科的研究努力。对于未来的先进技术,使用几丁质将最终通过仿生学在材料科学中推动许多创新和替代。本文是主题为“生物衍生和仿生可持续先进材料用于新兴技术(第 1 部分)”的一部分。