Department of Epidemiology, Harvard School of Public Health, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA.
Int J Epidemiol. 2011 Jun;40(3):780-5. doi: 10.1093/ije/dyr041. Epub 2011 Mar 30.
In a famous article, Simpson described a hypothetical data example that led to apparently paradoxical results.
We make the causal structure of Simpson's example explicit.
We show how the paradox disappears when the statistical analysis is appropriately guided by subject-matter knowledge. We also review previous explanations of Simpson's paradox that attributed it to two distinct phenomena: confounding and non-collapsibility.
Analytical errors may occur when the problem is stripped of its causal context and analyzed merely in statistical terms.
辛普森在一篇著名文章中描述了一个假设的数据例子,导致了明显的悖论结果。
我们使辛普森例子的因果结构变得明确。
我们展示了当统计分析受到主题知识的适当指导时,悖论是如何消失的。我们还回顾了以前对辛普森悖论的解释,这些解释将其归因于两种截然不同的现象:混杂和不可 collapsibility。
当问题被剥夺其因果背景并仅从统计角度进行分析时,可能会出现分析错误。