Suppr超能文献

感觉视紫红质-Htr 复合物在吸引和排斥信号中螺旋 F 的反向位移。

Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes.

机构信息

Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA.

出版信息

J Biol Chem. 2011 May 27;286(21):18868-77. doi: 10.1074/jbc.M110.200345. Epub 2011 Mar 29.

Abstract

Two forms of the phototaxis receptor sensory rhodopsin I distinguished by differences in its photoactive site have been shown to be directly correlated with attractant and repellent signaling by the dual-signaling protein. In prior studies, differences in the photoactive site defined the two forms, namely the direction of light-induced proton transfer from the chromophore and the pK(a) of an Asp counterion to the protonated chromophore. Here, we show by both in vivo and in vitro measurements that the two forms are distinct protein conformers with structural similarities to two conformers seen in the light-driven proton transport cycle of the related protein bacteriorhodopsin. Measurements of spontaneous cell motility reversal frequencies, an in vivo measure of histidine kinase activity in the phototaxis system, indicate that the two forms are a photointerconvertible pair, with one conformer activating and the other inhibiting the kinase. Protein conformational changes in these photoconversions monitored by site-directed spin labeling show that opposite structural changes in helix F, distant from the photoactive site, correspond to the opposite phototaxis signals. The results provide the first direct evidence that displacements of helix F are directly correlated with signaling and impact our understanding of the sensory rhodopsin I signaling mechanism and the evolution of diverse functionality in this protein family.

摘要

两种形式的光趋性受体感光视紫红质 I 通过其光活性部位的差异被证明与双信号蛋白的趋化和排斥信号直接相关。在先前的研究中,光活性部位的差异定义了这两种形式,即从发色团向质子转移的光诱导方向和与质子化发色团的天冬氨酸抗衡离子的 pK(a)。在这里,我们通过体内和体外测量表明,这两种形式是具有结构相似性的两种构象,与相关蛋白菌视紫红质的光驱动质子传输循环中观察到的两种构象相似。自发细胞运动反转频率的测量,即光趋性系统中天冬氨酸激酶活性的体内测量,表明这两种形式是一对可光互变的构象,一种构象激活激酶,另一种构象抑制激酶。通过定点自旋标记监测这些光转化中的蛋白质构象变化表明,远离光活性部位的螺旋 F 的相反结构变化对应于相反的光趋性信号。结果提供了第一个直接证据,表明螺旋 F 的位移与信号直接相关,并影响我们对感光视紫红质 I 信号机制和该蛋白家族中不同功能的进化的理解。

相似文献

1
Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes.
J Biol Chem. 2011 May 27;286(21):18868-77. doi: 10.1074/jbc.M110.200345. Epub 2011 Mar 29.
4
Attractant and repellent signaling conformers of sensory rhodopsin-transducer complexes.
Biochemistry. 2010 Aug 10;49(31):6696-704. doi: 10.1021/bi100798w.
6
A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.
J Mol Biol. 2012 Jan 20;415(3):455-63. doi: 10.1016/j.jmb.2011.11.025. Epub 2011 Nov 22.
7
Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals.
J Biol Chem. 2007 May 25;282(21):15550-8. doi: 10.1074/jbc.M701271200. Epub 2007 Mar 26.
8
Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16129-34. doi: 10.1073/pnas.0607467103. Epub 2006 Oct 18.
10
Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin.
Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1166-71. doi: 10.1073/pnas.90.4.1166.

引用本文的文献

1
Protein dynamics of a light-driven Na pump rhodopsin probed using a tryptophan residue near the retinal chromophore.
Biophys Physicobiol. 2023 Feb 25;20(Supplemental):e201016. doi: 10.2142/biophysico.bppb-v20.s016. eCollection 2023 Mar 21.
2
Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications.
Annu Rev Biochem. 2017 Jun 20;86:845-872. doi: 10.1146/annurev-biochem-101910-144233. Epub 2017 Mar 9.
3
Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin.
Biochemistry. 2015 Jun 30;54(25):3950-9. doi: 10.1021/bi501386d. Epub 2015 Jun 17.
4
His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I.
Biochemistry. 2014 Sep 23;53(37):5923-9. doi: 10.1021/bi500831n. Epub 2014 Sep 8.
5
Mechanism divergence in microbial rhodopsins.
Biochim Biophys Acta. 2014 May;1837(5):546-52. doi: 10.1016/j.bbabio.2013.06.006. Epub 2013 Jul 3.
6
Intramolecular proton transfer in channelrhodopsins.
Biophys J. 2013 Feb 19;104(4):807-17. doi: 10.1016/j.bpj.2013.01.002.
7
Light-induced subunit dissociation by a light-oxygen-voltage domain photoreceptor from Rhodobacter sphaeroides.
Biochemistry. 2013 Jan 15;52(2):378-91. doi: 10.1021/bi3015373. Epub 2013 Jan 3.

本文引用的文献

2
Attractant and repellent signaling conformers of sensory rhodopsin-transducer complexes.
Biochemistry. 2010 Aug 10;49(31):6696-704. doi: 10.1021/bi100798w.
3
High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin.
Nat Nanotechnol. 2010 Mar;5(3):208-12. doi: 10.1038/nnano.2010.7. Epub 2010 Feb 14.
4
A Schiff base connectivity switch in sensory rhodopsin signaling.
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16159-64. doi: 10.1073/pnas.0807486105. Epub 2008 Oct 13.
5
High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44. doi: 10.1073/pnas.0802515105. Epub 2008 May 19.
6
Signal transfer in haloarchaeal sensory rhodopsin- transducer complexes.
Photochem Photobiol. 2008 Jul-Aug;84(4):863-8. doi: 10.1111/j.1751-1097.2008.00314.x. Epub 2008 Mar 12.
7
Structural changes of sensory rhodopsin I and its transducer protein are dependent on the protonated state of Asp76.
Biochemistry. 2008 Mar 4;47(9):2875-83. doi: 10.1021/bi702050c. Epub 2008 Jan 26.
8
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Trends Biochem Sci. 2008 Jan;33(1):9-19. doi: 10.1016/j.tibs.2007.09.014. Epub 2007 Dec 31.
9
Constitutive activity in chimeras and deletions localize sensory rhodopsin II/HtrII signal relay to the membrane-inserted domain.
Mol Microbiol. 2007 Dec;66(6):1321-30. doi: 10.1111/j.1365-2958.2007.05983.x. Epub 2007 Nov 6.
10
Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors.
Results Probl Cell Differ. 2008;45:73-122. doi: 10.1007/400_2007_041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验