Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA.
J Biol Chem. 2011 May 13;286(19):16984-91. doi: 10.1074/jbc.M111.228833. Epub 2011 Mar 16.
Mutations in the three genes encoding the heterotrimeric RNase H2 complex cause Aicardi-Goutières Syndrome (AGS). Our mouse RNase H2 structure revealed that the catalytic RNase H2A subunit interfaces mostly with the RNase H2C subunit that is intricately interwoven with the RNase H2B subunit. We mapped the positions of AGS-causing RNase H2A mutations using the mouse RNase H2 structure and proposed that these mutations cause varied effects on catalytic potential. To determine the functional consequences of these mutations, heterotrimeric human RNase H2 complexes containing the RNase H2A subunit mutations were prepared, and catalytic efficiencies and nucleic acid binding properties were compared with the wild-type (WT) complex. These analyses reveal a dramatic range of effects with mutations at conserved positions G37S, R186W, and R235Q, reducing enzymatic activities and substrate binding affinities by as much as a 1000-fold, whereas mutations at non-conserved positions R108W, N212I, F230L, T240M, and R291H reduced activities and binding modestly or not at all. All mutants purify as three-subunit complexes, further supporting the required heterotrimeric structure in eukaryotic RNase H2. These kinetic properties reveal varied functional consequences of AGS-causing mutations in the catalytic RNase H2A subunit and reflect the complex mechanisms of nuclease dysfunction that include catalytic deficiencies and altered protein-nucleic acid interactions relevant in AGS.
编码异三聚体 RNase H2 复合物的三个基因中的突变导致 Aicardi-Goutières 综合征(AGS)。我们的小鼠 RNase H2 结构表明,催化性 RNase H2A 亚基主要与 RNase H2C 亚基相互作用,而 RNase H2C 亚基又与 RNase H2B 亚基错综复杂地交织在一起。我们使用小鼠 RNase H2 结构定位了导致 AGS 的 RNase H2A 突变的位置,并提出这些突变会对催化潜力产生不同的影响。为了确定这些突变的功能后果,制备了含有 RNase H2A 亚基突变的异三聚体人 RNase H2 复合物,并比较了其催化效率和核酸结合特性与野生型(WT)复合物。这些分析揭示了一系列显著的影响,保守位置 G37S、R186W 和 R235Q 的突变使酶活性和底物结合亲和力降低了多达 1000 倍,而非保守位置 R108W、N212I、F230L、T240M 和 R291H 的突变则适度或根本没有降低活性和结合。所有突变体均作为三亚基复合物进行纯化,进一步支持了真核生物 RNase H2 所需的异三聚体结构。这些动力学特性揭示了导致催化性 RNase H2A 亚基的 AGS 突变的不同功能后果,并反映了包括催化缺陷和改变的蛋白质-核酸相互作用在内的核酸酶功能障碍的复杂机制,这些机制与 AGS 相关。