Department of Molecular Structural Biology, Helmholtz-Centre for Infection Research, Inhoffenstrasse 7B, 38124 Braunschweig, Germany.
J Biol Chem. 2011 May 20;286(20):17593-600. doi: 10.1074/jbc.M110.203166. Epub 2011 Mar 25.
Despite the widespread biological function of carbohydrates, the polysaccharide synthesis mechanisms of glycosyltransferases remain largely unexplored. Bacterial levansucrases (glycoside hydrolase family 68) synthesize high molecular weight, β-(2,6)-linked levan from sucrose by transfer of fructosyl units. The kinetic and biochemical characterization of Bacillus megaterium levansucrase SacB variants Y247A, Y247W, N252A, D257A, and K373A reveal novel surface motifs remote from the sucrose binding site with distinct influence on the polysaccharide product spectrum. The wild type activity (k(cat)) and substrate affinity (K(m)) are maintained. The structures of the SacB variants reveal clearly distinguishable subsites for polysaccharide synthesis as well as an intact active site architecture. These results lead to a new understanding of polysaccharide synthesis mechanisms. The identified surface motifs are discussed in the context of related glycosyltransferases.
尽管碳水化合物具有广泛的生物学功能,但糖基转移酶的多糖合成机制在很大程度上仍未得到探索。细菌 levansucrases(糖苷水解酶家族 68)通过果糖基单元的转移,从蔗糖中合成高分子量的β-(2,6)-连接的莱凡。对芽孢杆菌 megaterium levansucrase SacB 变体 Y247A、Y247W、N252A、D257A 和 K373A 的动力学和生化特性的研究揭示了蔗糖结合位点以外的新的表面模体,它们对多糖产物谱具有不同的影响。野生型活性(k(cat))和底物亲和力(K(m))得以保持。SacB 变体的结构揭示了可明显区分的多糖合成亚基以及完整的活性位点结构。这些结果导致了对多糖合成机制的新理解。所鉴定的表面模体在相关糖基转移酶的背景下进行了讨论。