Meng Guoyu, Fütterer Klaus
School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
BMC Struct Biol. 2008 Mar 17;8:16. doi: 10.1186/1472-6807-8-16.
Fructans - beta-D-fructofuranosyl polymers with a sucrose starter unit - constitute a carbohydrate reservoir synthesised by a considerable number of bacteria and plant species. Biosynthesis of levan (alphaGlc(1-2)betaFru [(2-6)betaFru]n), an abundant form of bacterial fructan, is catalysed by levansucrase (sucrose:2,6-beta-D-fructan-6-beta-D-fructosyl transferase), utilizing sucrose as the sole substrate. Previously, we described the tertiary structure of Bacillus subtilis levansucrase in the ligand-free and sucrose-bound forms, establishing the mechanistic roles of three invariant carboxylate side chains, Asp86, Asp247 and Glu342, which are central to the double displacement reaction mechanism of fructosyl transfer. Still, the structural determinants of the fructosyl transfer reaction thus far have been only partially defined.
Here, we report high-resolution structures of three levansucrase point mutants, D86A, D247A, and E342A, and that of raffinose-bound levansucrase-E342A. The D86A and D247A substitutions have little effect on the active site geometry. In marked contrast, the E342A mutant reveals conformational flexibility of functionally relevant side chains in the vicinity of the general acid Glu342, including Arg360, a residue required for levan polymerisation. The raffinose-complex reveals a conserved mode of donor substrate binding, involving minimal contacts with the raffinose galactosyl unit, which protrudes out of the active site, and specificity-determining contacts essentially restricted to the sucrosyl moiety.
The present structures, in conjunction with prior biochemical data, lead us to hypothesise that the conformational flexibility of Arg360 is linked to it forming a transient docking site for the fructosyl-acceptor substrate, through an interaction network involving nearby Glu340 and Asn242 at the rim of a central pocket forming the active site.
果聚糖——以蔗糖为起始单元的β-D-呋喃果糖基聚合物——是由大量细菌和植物物种合成的碳水化合物储备。菊粉(αGlc(1-2)βFru [(2-6)βFru]n)是一种丰富的细菌果聚糖形式,其生物合成由菊粉蔗糖酶(蔗糖:2,6-β-D-果聚糖-6-β-D-果糖基转移酶)催化,利用蔗糖作为唯一底物。此前,我们描述了枯草芽孢杆菌菊粉蔗糖酶在无配体和蔗糖结合形式下的三级结构,确定了三个不变的羧基侧链Asp86、Asp247和Glu342的机制作用,它们对于果糖基转移的双取代反应机制至关重要。然而,迄今为止,果糖基转移反应的结构决定因素仅得到了部分定义。
在此,我们报告了三个菊粉蔗糖酶点突变体D86A、D247A和E342A以及棉子糖结合的菊粉蔗糖酶-E342A的高分辨率结构。D86A和D247A取代对活性位点几何结构影响不大。形成鲜明对比的是,E342A突变体揭示了在一般酸Glu342附近功能相关侧链的构象灵活性,包括菊粉聚合所需的残基Arg360。棉子糖复合物揭示了供体底物结合的保守模式,涉及与从活性位点突出的棉子糖半乳糖基单元的最小接触,以及特异性决定接触基本上仅限于蔗糖基部分。
目前的结构,结合先前的生化数据,使我们推测Arg360的构象灵活性与它通过涉及活性位点中心口袋边缘附近的Glu340和Asn242的相互作用网络形成果糖基受体底物的瞬时对接位点有关。