Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.
J Biol Chem. 2011 May 20;286(20):18190-201. doi: 10.1074/jbc.M111.236133. Epub 2011 Mar 28.
Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.
大脑发育和脊髓再生需要神经突发芽和生长锥导航,以响应细胞外环境中存在的延伸和崩溃因子。这些外部导向线索通过细胞内大量细胞骨架、黏附和极性复合物信号蛋白的蛋白质磷酸化来控制神经突生长锥的延伸和缩回过程。然而,介导神经发生的复杂激酶/底物信号网络尚未得到研究。在这里,我们使用神经突纯化方法结合质谱法,比较了生长和缩回条件下的神经突磷酸蛋白组。已经注释并映射到控制激酶/磷酸酶网络、细胞骨架重塑和轴突/树突特化的信号通路的来自 1883 种蛋白质的 4000 多个非冗余磷酸化位点。全面的信息学和功能研究揭示了一个区室化的 ERK 激活/失活细胞骨架开关,分别控制神经突的生长和缩回。我们的发现提供了第一个系统范围的磷酸蛋白信号网络分析,使神经突生长和缩回,并揭示了一个重要的分子开关,控制神经发生。