Suppr超能文献

檀香香气的生物合成涉及倍半萜合酶(TPS)-a 和 TPS-b 亚家族的萜烯合酶,包括檀香烯合酶。

Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases.

机构信息

School of Plant Biology (M084), Faculty of Natural and Agricultural Sciences, University of Western Australia Crawley, WA 6009, Australia.

出版信息

J Biol Chem. 2011 May 20;286(20):17445-54. doi: 10.1074/jbc.M111.231787. Epub 2011 Mar 24.

Abstract

Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus.

摘要

檀香油是世界上最珍贵的香精之一。为了鉴定负责檀香烯生物合成的基因和编码酶,我们分别从三个不同的檀香属物种檀香(Santalum album)、南澳檀香(S. austrocaledonicum)和匙叶檀香(S. spicatum)中克隆和表征了三个同源萜烯合酶(TPS)基因 SaSSy、SauSSy 和 SspiSSy。编码的酶催化(E,E)-法呢基二磷酸(E,E-FPP)形成α-、β-、表-β-檀香烯和α-外-佛手烯。重组 SaSSy 还与(Z,Z)-法呢基二磷酸(Z,Z-FPP)一起进行了测试,令人惊讶的是,它产生了α-endo-bergamotene、α-檀香烯、(Z)-β-法呢烯、表-β-檀香烯和β-檀香烯的混合物。还从这三个物种中克隆并功能表征了编码双环倍半萜/倍半萜醇合酶的额外 cDNA。檀香烯合酶和双环倍半萜/倍半萜醇合酶都位于 TPS-b 系统发育分支中,该分支更常见于被子植物单萜合酶。负责形成大环和双环倍半萜的同源 TPS-a 合酶也得到了表征。檀香烯和双环倍半萜醇合酶的严格功能和有限的序列差异与 TPS-a 合酶形成对比,表明这些化合物在檀香属的进化中发挥了重要作用。

相似文献

2
Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L.
Arch Biochem Biophys. 2008 Sep 1;477(1):121-30. doi: 10.1016/j.abb.2008.05.008. Epub 2008 May 27.
4
The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum).
Phytochemistry. 2015 May;113:79-86. doi: 10.1016/j.phytochem.2014.12.009. Epub 2015 Jan 24.
7
Biosynthesis of Sandalwood Oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol.
PLoS One. 2013 Sep 18;8(9):e75053. doi: 10.1371/journal.pone.0075053. eCollection 2013.
8
Molecular regulation of santalol biosynthesis in Santalum album L.
Gene. 2013 Sep 25;527(2):642-8. doi: 10.1016/j.gene.2013.06.080. Epub 2013 Jul 13.
9
The santalene synthase from Cinnamomum camphora: Reconstruction of a sesquiterpene synthase from a monoterpene synthase.
Arch Biochem Biophys. 2020 Nov 30;695:108647. doi: 10.1016/j.abb.2020.108647. Epub 2020 Oct 26.
10
A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites.
Plant Cell. 2009 Jan;21(1):301-17. doi: 10.1105/tpc.107.057885. Epub 2009 Jan 20.

引用本文的文献

1
Advances in the Biosynthesis of Plant Terpenoids: Models, Mechanisms, and Applications.
Plants (Basel). 2025 May 10;14(10):1428. doi: 10.3390/plants14101428.
2
The AREB transcription factor SaAREB6 promotes drought stress-induced santalol biosynthesis in sandalwood.
Hortic Res. 2024 Dec 17;12(3):uhae347. doi: 10.1093/hr/uhae347. eCollection 2025 Mar.
3
Genetically-modified activation strategy facilitates the discovery of sesquiterpene-derived metabolites from .
Synth Syst Biotechnol. 2024 Dec 25;10(2):391-400. doi: 10.1016/j.synbio.2024.12.006. eCollection 2025 Jun.
5
Exploration of diverse secondary metabolites from Penicillium brasilianum by co-culturing with Armillaria mellea.
Appl Microbiol Biotechnol. 2024 Sep 12;108(1):462. doi: 10.1007/s00253-024-13282-4.
6
8
Chromosome-level genome of reveals molecular mechanism of aroma compounds biosynthesis.
Front Plant Sci. 2024 Mar 13;15:1368869. doi: 10.3389/fpls.2024.1368869. eCollection 2024.
9
Identification and expression analysis of family gene in L.
Heliyon. 2024 Mar 16;10(6):e27817. doi: 10.1016/j.heliyon.2024.e27817. eCollection 2024 Mar 30.
10
Improved chromosome-level genome assembly of Indian sandalwood (Santalum album).
Sci Data. 2023 Dec 21;10(1):921. doi: 10.1038/s41597-023-02849-x.

本文引用的文献

2
A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites.
Plant Cell. 2009 Jan;21(1):301-17. doi: 10.1105/tpc.107.057885. Epub 2009 Jan 20.
3
Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L.
Arch Biochem Biophys. 2008 Sep 1;477(1):121-30. doi: 10.1016/j.abb.2008.05.008. Epub 2008 May 27.
4
The function of terpene natural products in the natural world.
Nat Chem Biol. 2007 Jul;3(7):408-14. doi: 10.1038/nchembio.2007.5.
6
A modular approach for facile biosynthesis of labdane-related diterpenes.
J Am Chem Soc. 2007 May 30;129(21):6684-5. doi: 10.1021/ja071158n. Epub 2007 May 5.
7
Quantitative co-occurrence of sesquiterpenes; a tool for elucidating their biosynthesis in Indian sandalwood, Santalum album.
Phytochemistry. 2006 Nov;67(22):2463-8. doi: 10.1016/j.phytochem.2006.09.013. Epub 2006 Oct 12.
8
Essential oil composition of the different parts of Eryngium bourgatii Gouan from Spain.
J Chromatogr A. 2005 May 13;1074(1-2):235-9. doi: 10.1016/j.chroma.2005.03.036.
10
Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species.
Plant Cell. 2004 Nov;16(11):3110-31. doi: 10.1105/tpc.104.023895.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验