INSERM UMR694, Centre Hospitalier Universitaire d’Angers, F-49033 Angers, France.
J Biol Chem. 2011 May 20;286(20):18229-39. doi: 10.1074/jbc.M110.217521. Epub 2011 Mar 31.
Members of the peroxisome proliferator-activated receptor γ coactivator-1 family (i.e. PGC-1α, PGC-1β, and the PGC-1-related coactivator (PRC)) are key regulators of mitochondrial biogenesis and function. These regulators serve as mediators between environmental or endogenous signals and the transcriptional machinery governing mitochondrial biogenesis. The FTC-133 and RO82 W-1 follicular thyroid carcinoma cell lines, which present significantly different numbers of mitochondria, metabolic mechanisms, and expression levels of PRC and PGC-1α, may employ retrograde signaling in response to respiratory dysfunction. Nitric oxide (NO) and calcium have been hypothesized to participate in this activity. We investigated the effects of the S-nitroso-N-acetyl-DL-penicillamine-NO donor, on the expression of genes involved in mitochondrial biogenesis and cellular metabolic functions in FTC-133 and RO82 W-1 cells by measuring lactate dehydrogenase and cytochrome c oxidase (COX) activities. We studied the action of ionomycin and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM) (i.e. a calcium ionophore and a cytosolic calcium chelator) on whole genome expression and mitochondrial biogenesis in RO82 W-1 cells. COX activity and the dynamics of endoplasmic reticulum and mitochondrial networks were analyzed in regard to calcium-modulating treatments. In the FTC-133 and RO82 W-1 cells, the mitochondrial biogenesis induced by NO was mainly related to PRC expression as a retrograde mitochondrial signaling. Ionomycin diminished COX activity and negatively regulated PRC-mediated mitochondrial biogenesis in RO82 W-1 cells, whereas BAPTA/AM produced the opposite effects with a reorganization of the mitochondrial network. This is the first demonstration that NO and calcium regulate mitochondrial biogenesis through the PRC pathway in thyroid cell lines.
过氧化物酶体增殖物激活受体 γ 共激活因子-1 家族(即 PGC-1α、PGC-1β 和 PGC-1 相关共激活因子(PRC))是线粒体生物发生和功能的关键调节因子。这些调节剂作为环境或内源性信号与调节线粒体生物发生的转录机制之间的中介。FTC-133 和 RO82 W-1 滤泡甲状腺癌细胞系,其线粒体数量、代谢机制和 PRC 和 PGC-1α 的表达水平存在显著差异,可能会通过逆行信号对呼吸功能障碍做出反应。一氧化氮(NO)和钙被假设参与此活动。我们通过测量乳酸脱氢酶和细胞色素 c 氧化酶(COX)活性,研究了 S-亚硝基-N-乙酰-DL-青霉胺-NO 供体对 FTC-133 和 RO82 W-1 细胞中线粒体生物发生和细胞代谢功能相关基因表达的影响。我们研究了离子霉素和 1,2-双(2-氨基苯氧基)乙烷-N,N,N',N'-四乙酸-乙酰氧基甲酯(BAPTA/AM)(即钙离子载体和细胞溶质钙螯合剂)对 RO82 W-1 细胞全基因组表达和线粒体生物发生的作用。分析了钙调节处理对 COX 活性和内质网和线粒体网络动力学的影响。在 FTC-133 和 RO82 W-1 细胞中,NO 诱导的线粒体生物发生主要与 PRC 表达有关,作为逆行线粒体信号。离子霉素降低了 RO82 W-1 细胞中的 COX 活性并负调节 PRC 介导的线粒体生物发生,而 BAPTA/AM 则产生相反的效果并重新组织线粒体网络。这是首次证明 NO 和钙通过甲状腺细胞系中的 PRC 途径调节线粒体生物发生。