Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom.
J Biol Chem. 2011 May 6;286(18):16386-91. doi: 10.1074/jbc.C111.228122. Epub 2011 Mar 15.
Eukaryotic sodium channels are important membrane proteins involved in ion permeation, homeostasis, and electrical signaling. They are long, multidomain proteins that do not express well in heterologous systems, and hence, structure/function and biochemical studies on purified sodium channel proteins have been limited. Bacteria produce smaller, homologous tetrameric single domain channels specific for the conductance of sodium ions. They consist of N-terminal voltage sensor and C-terminal pore subdomains. We designed a functional pore-only channel consisting of the final two transmembrane helices, the intervening P-region, and the C-terminal extramembranous region of the sodium channel from the marine bacterium Silicibacter pomeroyi. This sodium "pore" channel forms a tetrameric, folded structure that is capable of supporting sodium flux in phospholipid vesicles. The pore-only channel is more thermally stable than its full-length counterpart, suggesting that the voltage sensor subdomain may destabilize the full-length channel. The pore subdomains can assemble, fold, and function independently from the voltage sensor and exhibit similar ligand-blocking characteristics as the intact channel. The availability of this simple pore-only construct should enable high-level expression for the testing of potential new ligands and enhance our understanding of the structural features that govern sodium selectivity and permeability.
真核生物钠离子通道是一种重要的膜蛋白,参与离子渗透、内稳态和电信号传递。它们是长的、多结构域的蛋白质,在异源系统中表达不佳,因此,对纯化的钠离子通道蛋白的结构/功能和生化研究受到限制。细菌产生较小的、同源的四聚体单域通道,专门用于钠离子的传导。它们由 N 端电压传感器和 C 端孔亚基组成。我们设计了一种由海洋细菌 Silicibacter pomeroyi 的钠离子通道的最后两个跨膜螺旋、中间的 P 区和 C 端胞外区组成的功能性仅孔道通道。这种钠离子“孔”道形成一个四聚体折叠结构,能够在磷脂囊泡中支持钠离子流。仅孔道比全长通道更热稳定,表明电压传感器亚基可能使全长通道不稳定。孔亚基可以独立于电压传感器组装、折叠和发挥功能,并表现出与完整通道相似的配体阻断特性。这种简单的仅孔道构建体的可用性应该能够实现高水平的表达,以测试潜在的新配体,并增强我们对控制钠离子选择性和通透性的结构特征的理解。