Suppr超能文献

调幅检测随调制频率和刺激持续时间的变化:猕猴与人类的比较。

Amplitude modulation detection as a function of modulation frequency and stimulus duration: comparisons between macaques and humans.

机构信息

Center for Neuroscience, UC Davis, 1544 Newton Ct. Davis, CA 95616, USA.

出版信息

Hear Res. 2011 Jul;277(1-2):37-43. doi: 10.1016/j.heares.2011.03.014. Epub 2011 Mar 30.

Abstract

Previous observations show that humans outperform non-human primates on some temporally-based auditory discrimination tasks, suggesting there are species differences in the proficiency of auditory temporal processing among primates. To further resolve these differences we compared the abilities of rhesus macaques and humans to detect sine-amplitude modulation (AM) of a broad-band noise carrier as a function of both AM frequency (2.5 Hz-2 kHz) and signal duration (50-800 ms), under similar testing conditions. Using a go/no-go AM detection task, we found that macaques were less sensitive than humans at the lower frequencies and shorter durations tested but were as, or slightly more, sensitive at higher frequencies and longer durations. Humans had broader AM tuning functions, with lower frequency regions of peak sensitivity (10-60 Hz) than macaques (30-120 Hz). These results support the notion that there are species differences in temporal processing among primates, and underscore the importance of stimulus duration when making cross-species comparisons for temporally-based tasks.

摘要

先前的观察表明,人类在某些基于时间的听觉辨别任务上优于非人类灵长类动物,这表明在灵长类动物中,听觉时间处理的熟练程度存在物种差异。为了进一步解决这些差异,我们比较了恒河猴和人类在检测宽带噪声载波的正弦幅度调制(AM)方面的能力,这是一个函数,包括 AM 频率(2.5 Hz-2 kHz)和信号持续时间(50-800 ms),在类似的测试条件下。使用“是/否”AM 检测任务,我们发现,与人类相比,猕猴在较低频率和较短持续时间的测试中灵敏度较低,但在较高频率和较长持续时间的测试中灵敏度相同或略高。人类的 AM 调谐函数较宽,其敏感峰值的低频区域(10-60 Hz)低于猕猴(30-120 Hz)。这些结果支持了这样一种观点,即在灵长类动物中,时间处理存在物种差异,并强调了在基于时间的任务进行跨物种比较时,刺激持续时间的重要性。

相似文献

1
3
Mechanisms underlying the detection of frequency modulation.
J Acoust Soc Am. 2010 Dec;128(6):3642-8. doi: 10.1121/1.3506350.
5
Subcomponent cues in binaural unmasking.
J Acoust Soc Am. 2011 Jun;129(6):3846-55. doi: 10.1121/1.3560944.
6
Isolating spectral cues in amplitude and quasi-frequency modulation discrimination by reducing stimulus duration.
Hear Res. 2017 May;348:129-133. doi: 10.1016/j.heares.2017.03.004. Epub 2017 Mar 8.
7
Effects of randomizing phase on the discrimination between amplitude-modulated and quasi-frequency-modulated tones.
Hear Res. 2012 Aug;290(1-2):72-82. doi: 10.1016/j.heares.2012.04.021. Epub 2012 May 17.
10
Effects of temporal stimulus properties on the perception of across-frequency asynchrony.
J Acoust Soc Am. 2013 Feb;133(2):982-97. doi: 10.1121/1.4773350.

引用本文的文献

1
Hierarchical emergence of opponent coding in auditory belt cortex.
J Neurophysiol. 2025 Mar 1;133(3):944-964. doi: 10.1152/jn.00519.2024. Epub 2025 Feb 18.
2
Hierarchical differences in the encoding of amplitude modulation in the subcortical auditory system of awake nonhuman primates.
J Neurophysiol. 2024 Sep 1;132(3):1098-1114. doi: 10.1152/jn.00329.2024. Epub 2024 Aug 14.
3
Spectral-temporal processing of naturalistic sounds in monkeys and humans.
J Neurophysiol. 2024 Jan 1;131(1):38-63. doi: 10.1152/jn.00129.2023. Epub 2023 Nov 15.
4
The Representation of Time Windows in Primate Auditory Cortex.
Cereb Cortex. 2022 Aug 3;32(16):3568-3580. doi: 10.1093/cercor/bhab434.
5
Three psychophysical metrics of auditory temporal integration in macaques.
J Acoust Soc Am. 2021 Oct;150(4):3176. doi: 10.1121/10.0006658.
6
Mapping between sound, brain and behaviour: four-level framework for understanding rhythm processing in humans and non-human primates.
Philos Trans R Soc Lond B Biol Sci. 2021 Oct 11;376(1835):20200325. doi: 10.1098/rstb.2020.0325. Epub 2021 Aug 23.
7
An Emergent Population Code in Primary Auditory Cortex Supports Selective Attention to Spectral and Temporal Sound Features.
J Neurosci. 2021 Sep 8;41(36):7561-7577. doi: 10.1523/JNEUROSCI.0693-20.2021. Epub 2021 Jul 1.
8
Amplitude modulation encoding in the auditory cortex: comparisons between the primary and middle lateral belt regions.
J Neurophysiol. 2020 Dec 1;124(6):1706-1726. doi: 10.1152/jn.00171.2020. Epub 2020 Oct 7.
9
Behavioral effects of rhythm, carrier frequency and temporal cueing on the perception of sound sequences.
PLoS One. 2020 Jun 5;15(6):e0234251. doi: 10.1371/journal.pone.0234251. eCollection 2020.

本文引用的文献

1
Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys.
Hear Res. 2011 Jul;277(1-2):204-10. doi: 10.1016/j.heares.2010.12.021. Epub 2010 Dec 31.
2
Coding of amplitude modulation in primary auditory cortex.
J Neurophysiol. 2011 Feb;105(2):582-600. doi: 10.1152/jn.00621.2010. Epub 2010 Dec 8.
3
5
Assessment of auditory function in rhesus monkeys (Macaca mulatta): effects of age and calorie restriction.
Neurobiol Aging. 2004 Aug;25(7):945-54. doi: 10.1016/j.neurobiolaging.2003.09.006.
7
Temporal modulation transfer functions in the barn owl (Tyto alba).
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Jan;187(12):937-43. doi: 10.1007/s00359-001-0259-5.
8
Global processing of spectrally complex sounds in macaques (Macaca mullata) and humans.
J Comp Physiol A. 2000 Sep;186(9):903-12. doi: 10.1007/s003590000145.
9
Auditory temporal integration in the rhesus macaque (Macaca mulatta).
J Acoust Soc Am. 1999 Aug;106(2):954-65. doi: 10.1121/1.427108.
10
Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration.
J Acoust Soc Am. 1997 Nov;102(5 Pt 1):2906-19. doi: 10.1121/1.420345.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验