Suppr超能文献

聚类规则间隔短回文重复(CRISPR)区域在火疫病病原体欧文氏菌中的多样性、进化和功能。

Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora.

机构信息

Agroscope Changins-Wädenswil ACW, Postfach, CH-8820 Wädenswil, Switzerland.

出版信息

Appl Environ Microbiol. 2011 Jun;77(11):3819-29. doi: 10.1128/AEM.00177-11. Epub 2011 Apr 1.

Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system confers acquired heritable immunity against mobile nucleic acid elements in prokaryotes, limiting phage infection and horizontal gene transfer of plasmids. In CRISPR arrays, characteristic repeats are interspersed with similarly sized nonrepetitive spacers derived from transmissible genetic elements and acquired when the cell is challenged with foreign DNA. New spacers are added sequentially and the number and type of CRISPR units can differ among strains, providing a record of phage/plasmid exposure within a species and giving a valuable typing tool. The aim of this work was to investigate CRISPR diversity in the highly homogeneous species Erwinia amylovora, the causal agent of fire blight. A total of 18 CRISPR genotypes were defined within a collection of 37 cosmopolitan strains. Strains from Spiraeoideae plants clustered in three major groups: groups II and III were composed exclusively of bacteria originating from the United States, whereas group I generally contained strains of more recent dissemination obtained in Europe, New Zealand, and the Middle East. Strains from Rosoideae and Indian hawthorn (Rhaphiolepis indica) clustered separately and displayed a higher intrinsic diversity than that of isolates from Spiraeoideae plants. Reciprocal exclusion was generally observed between plasmid content and cognate spacer sequences, supporting the role of the CRISPR/Cas system in protecting against foreign DNA elements. However, in several group III strains, retention of plasmid pEU30 is inconsistent with a functional CRISPR/Cas system.

摘要

成簇规律间隔短回文重复序列(CRISPR)/Cas 系统赋予原核生物对移动核酸元件的获得性遗传免疫,限制噬菌体感染和质粒的水平基因转移。在 CRISPR 阵列中,特征性重复序列与源自可传播遗传元件的大小相似的非重复间隔区交错排列,当细胞受到外源 DNA 挑战时会产生这些间隔区。新的间隔区会依次添加,并且 CRISPR 单元的数量和类型在菌株之间可能不同,为物种内的噬菌体/质粒暴露提供了记录,并提供了有价值的分型工具。本研究旨在调查火疫病原菌——高度均匀的埃希氏菌属中 CRISPR 的多样性。在来自全球的 37 个菌株的集合中,定义了 18 种 CRISPR 基因型。来自苹果属植物的菌株聚集成三个主要组:组 II 和 III 仅由源自美国的细菌组成,而组 I 通常包含在欧洲、新西兰和中东获得的传播较晚的菌株。来自蔷薇科和印度山楂(Rhaphiolepis indica)的菌株分别聚类,并且比来自苹果属植物的分离株具有更高的固有多样性。质粒内容和同源间隔区序列之间通常观察到相互排斥,支持 CRISPR/Cas 系统在保护免受外源 DNA 元件侵害方面的作用。然而,在几个组 III 菌株中,质粒 pEU30 的保留与功能 CRISPR/Cas 系统不一致。

相似文献

2
Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking.
PLoS One. 2012;7(7):e41706. doi: 10.1371/journal.pone.0041706. Epub 2012 Jul 31.
7
Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity.
Appl Environ Microbiol. 2014 Feb;80(3):994-1001. doi: 10.1128/AEM.03015-13. Epub 2013 Nov 22.
8
Intraspecific diversity of Erwinia amylovora strains from northern Algeria.
BMC Microbiol. 2024 Oct 7;24(1):389. doi: 10.1186/s12866-024-03555-3.
10
Function and Application of the CRISPR-Cas System in the Plant Pathogen .
Appl Environ Microbiol. 2022 Apr 12;88(7):e0251321. doi: 10.1128/aem.02513-21. Epub 2022 Mar 14.

引用本文的文献

2
Genetic Diversity and Genotype Distribution of Erwinia amylovora in Korea.
Plant Pathol J. 2025 Feb;41(1):88-99. doi: 10.5423/PPJ.OA.09.2024.0151. Epub 2025 Feb 1.
4
Intraspecific diversity of Erwinia amylovora strains from northern Algeria.
BMC Microbiol. 2024 Oct 7;24(1):389. doi: 10.1186/s12866-024-03555-3.
5
Fire blight cases in Almaty Region of Kazakhstan in the proximity of wild apple distribution area.
J Plant Pathol. 2024;106(3):971-978. doi: 10.1007/s42161-023-01416-y. Epub 2023 Jun 12.
6
Phage Mediated Biocontrol: A Promising Green Solution for Sustainable Agriculture.
Indian J Microbiol. 2024 Jun;64(2):318-327. doi: 10.1007/s12088-024-01204-x. Epub 2024 Feb 5.
9
Variability within a clonal population of disclosed by phenotypic analysis.
PeerJ. 2022 Jul 21;10:e13695. doi: 10.7717/peerj.13695. eCollection 2022.
10
CRISPR-Cas systems: role in cellular processes beyond adaptive immunity.
Folia Microbiol (Praha). 2022 Dec;67(6):837-850. doi: 10.1007/s12223-022-00993-2. Epub 2022 Jul 19.

本文引用的文献

1
Diversity of CRISPR loci in Escherichia coli.
Microbiology (Reading). 2010 May;156(5):1351-1361. doi: 10.1099/mic.0.036046-0.
2
Genome sequence of an Erwinia amylovora strain with pathogenicity restricted to Rubus plants.
J Bacteriol. 2011 Feb;193(3):785-6. doi: 10.1128/JB.01352-10. Epub 2010 Dec 3.
3
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.
Nature. 2010 Nov 4;468(7320):67-71. doi: 10.1038/nature09523.
4
CRISPR associated diversity within a population of Sulfolobus islandicus.
PLoS One. 2010 Sep 28;5(9):e12988. doi: 10.1371/journal.pone.0012988.
5
Sequence- and structure-specific RNA processing by a CRISPR endonuclease.
Science. 2010 Sep 10;329(5997):1355-8. doi: 10.1126/science.1192272.
6
Self-targeting by CRISPR: gene regulation or autoimmunity?
Trends Genet. 2010 Aug;26(8):335-40. doi: 10.1016/j.tig.2010.05.008. Epub 2010 Jul 1.
7
Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp.
Mol Plant Microbe Interact. 2010 Apr;23(4):384-93. doi: 10.1094/MPMI-23-4-0384.
8
CRISPR/Cas, the immune system of bacteria and archaea.
Science. 2010 Jan 8;327(5962):167-70. doi: 10.1126/science.1179555.
10
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.
Cell. 2009 Nov 25;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验