Department of Chemical Engineering, University of Patras, Patras, Greece.
J Phys Chem A. 2011 May 5;115(17):4214-22. doi: 10.1021/jp109339g. Epub 2011 Apr 4.
The dissolution reaction of WO3 in pure molten K2S2O7 and in molten K2S2O7-K2SO4 mixtures is studied under static equilibrium conditions in the XWO3(0) = 0-0.33 mol fraction range at temperatures up to 860 °C. High temperature Raman spectroscopy shows that the dissolution leads to formation of W(VI) oxosulfato complexes, and the spectral features are adequate for inferring the structural and vibrational properties of the complexes formed. The band characteristics observed in the W=O stretching region (band wavenumbers, intensities, and polarization characteristics) are consistent with a dioxo W(=O)2 configuration as a core unit within the oxosulfato complexes formed. A quantitative exploitation of the relative Raman intensities in the binary WO3-K2S2O7 system allows the determination of the stoichiometric coefficient, n, of the complex formation reaction WO3 + nS2O7(2-) --> C(2n-). It is found that n = 1; therefore, the reaction WO3 + S2O7(2-) > WO2(SO4)2(2-) with six-fold W coordination is proposed as fully consistent with the observed Raman features. The effects of the incremental dissolution and presence of K2SO4 in WO3-K2S2O7 melts point to a WO3 · K2S2O7 · K2SO4 stoichiometry and a corresponding complex formation reaction in the ternary molten WO3-K2S2O7-K2SO4 system according to WO3 + S2O7(2-) + SO4(2-) --> WO2(SO4)3(4-). The coordination sphere of W in WO2(SO4)2(2-) (binary system) is completed with two oxide ligands and two chelating sulfate groups. A dimeric {WO2(SO4)2}2(μ-SO4)2 configuration is proposed for the W oxosulfato complex in the ternary system, generated from inversion symmetry of aWO2(SO4)3(4-) moiety resulting in two bridging sulfates. The most characteristic Raman bands for the W(VI) oxosulfato complexes pertain to W(=O)2 stretching modes (i) at 972 (polarized) and 937 (depolarized) cm(-1) for the ν(s) and ν(as) W(=O)2 modes of WO2(SO4)2(2-), and (ii) at 933 (polarized) and 909 (depolarized) cm(-1) for the respective modes of {WO2(SO4)2}2(μ-SO4)2.
在 XWO3(0) = 0-0.33 摩尔分数范围内,在 860°C 以下的温度下,在静态平衡条件下研究了 WO3 在纯熔融 K2S2O7 和熔融 K2S2O7-K2SO4 混合物中的溶解反应。高温拉曼光谱表明,溶解导致形成 W(VI)氧代硫酸根配合物,光谱特征足以推断形成的配合物的结构和振动特性。在 W=O 伸缩区域中观察到的带特征(带波数、强度和偏振特性)与形成的氧代硫酸根配合物中的二氧代 W(=O)2 构型一致。在二元 WO3-K2S2O7 系统中定量利用相对拉曼强度,可以确定配合物形成反应 WO3 + nS2O7(2-) → C(2n-)的化学计量系数 n。结果发现 n = 1;因此,提出反应 WO3 + S2O7(2-) > WO2(SO4)2(2-),其中 W 具有六配位,与观察到的拉曼特征完全一致。WO3-K2S2O7 熔体中增量溶解和 K2SO4 的存在的影响表明,在三元熔融 WO3-K2S2O7-K2SO4 系统中,根据 WO3 + S2O7(2-) + SO4(2-) → WO2(SO4)3(4-),存在 WO3·K2S2O7·K2SO4 化学计量和相应的配合物形成反应。在 WO2(SO4)2(2-)(二元体系)中,W 的配位球由两个氧化物配体和两个螯合硫酸根组成。提出了 WO 氧代硫酸根配合物的二聚体 {WO2(SO4)2}2(μ-SO4)2 构型,它是由 aWO2(SO4)3(4-) 部分的反演对称产生的,导致两个桥连的硫酸根。W(VI)氧代硫酸根配合物的最特征拉曼带属于 W(=O)2 伸缩模式(i)在 972(偏振)和 937(非偏振)cm(-1)处,属于 WO2(SO4)2(2-)的 ν(s) 和 ν(as) W(=O)2 模式,和(ii)在 933(偏振)和 909(非偏振)cm(-1)处,分别属于 {WO2(SO4)2}2(μ-SO4)2的各自模式。