Suppr超能文献

基于灰色关联分析的无监督单链接聚类在细胞外电生理记录中的自动尖峰分类。

Automatic spike sorting for extracellular electrophysiological recording using unsupervised single linkage clustering based on grey relational analysis.

机构信息

Department of Electrical Engineering, National Chiao Tung University, No 1001, Ta-Hsueh Rd, Hsinchu, Taiwan 300, Republic of China.

出版信息

J Neural Eng. 2011 Jun;8(3):036003. doi: 10.1088/1741-2560/8/3/036003. Epub 2011 Apr 4.

Abstract

Automatic spike sorting is a prerequisite for neuroscience research on multichannel extracellular recordings of neuronal activity. A novel spike sorting framework, combining efficient feature extraction and an unsupervised clustering method, is described here. Wavelet transform (WT) is adopted to extract features from each detected spike, and the Kolmogorov-Smirnov test (KS test) is utilized to select discriminative wavelet coefficients from the extracted features. Next, an unsupervised single linkage clustering method based on grey relational analysis (GSLC) is applied for spike clustering. The GSLC uses the grey relational grade as the similarity measure, instead of the Euclidean distance for distance calculation; the number of clusters is automatically determined by the elbow criterion in the threshold-cumulative distribution. Four simulated data sets with four noise levels and electrophysiological data recorded from the subthalamic nucleus of eight patients with Parkinson's disease during deep brain stimulation surgery are used to evaluate the performance of GSLC. Feature extraction results from the use of WT with the KS test indicate a reduced number of feature coefficients, as well as good noise rejection, despite similar spike waveforms. Accordingly, the use of GSLC for spike sorting achieves high classification accuracy in all simulated data sets. Moreover, J-measure results in the electrophysiological data indicating that the quality of spike sorting is adequate with the use of GSLC.

摘要

自动尖峰分类是多通道神经元活动细胞外记录的神经科学研究的前提。这里描述了一种新的尖峰分类框架,结合了有效的特征提取和无监督聚类方法。采用小波变换 (WT) 从每个检测到的尖峰中提取特征,并利用柯尔莫哥洛夫-斯米尔诺夫检验 (KS 检验) 从提取的特征中选择有区别的小波系数。接下来,应用基于灰色关联分析的无监督单链接聚类方法 (GSLC) 进行尖峰聚类。GSLC 使用灰色关联度作为相似性度量,而不是欧几里得距离进行距离计算;簇的数量通过阈值累积分布中的肘准则自动确定。使用 WT 结合 KS 检验进行特征提取的结果表明,尽管尖峰波形相似,但特征系数的数量减少了,并且具有良好的噪声抑制能力。因此,在所有模拟数据集中,GSLC 用于尖峰分类都能达到较高的分类精度。此外,在电生理数据中的 J 度量结果表明,使用 GSLC 进行尖峰分类的质量是足够的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验