Suppr超能文献

一种无监督在线尖峰排序框架。

An Unsupervised Online Spike-Sorting Framework.

作者信息

Knieling Simeon, Sridharan Kousik S, Belardinelli Paolo, Naros Georgios, Weiss Daniel, Mormann Florian, Gharabaghi Alireza

机构信息

* Division of Functional and Restorative Neurosurgery & Division of Translational Neurosurgery, Department of Neurosurgery, and Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Otfried-Mueller-Str.45, 72076 Tuebingen, Germany.

‡ Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany.

出版信息

Int J Neural Syst. 2016 Aug;26(5):1550042. doi: 10.1142/S0129065715500422. Epub 2015 Oct 27.

Abstract

Extracellular neuronal microelectrode recordings can include action potentials from multiple neurons. To separate spikes from different neurons, they can be sorted according to their shape, a procedure referred to as spike-sorting. Several algorithms have been reported to solve this task. However, when clustering outcomes are unsatisfactory, most of them are difficult to adjust to achieve the desired results. We present an online spike-sorting framework that uses feature normalization and weighting to maximize the distinctiveness between different spike shapes. Furthermore, multiple criteria are applied to either facilitate or prevent cluster fusion, thereby enabling experimenters to fine-tune the sorting process. We compare our method to established unsupervised offline (Wave_Clus (WC)) and online (OSort (OS)) algorithms by examining their performance in sorting various test datasets using two different scoring systems (AMI and the Adamos metric). Furthermore, we evaluate sorting capabilities on intra-operative recordings using established quality metrics. Compared to WC and OS, our algorithm achieved comparable or higher scores on average and produced more convincing sorting results for intra-operative datasets. Thus, the presented framework is suitable for both online and offline analysis and could substantially improve the quality of microelectrode-based data evaluation for research and clinical application.

摘要

细胞外神经元微电极记录可包含多个神经元的动作电位。为了区分来自不同神经元的尖峰,可根据其形状进行分类,这一过程称为尖峰分类。已有多种算法被报道用于解决此任务。然而,当聚类结果不尽人意时,大多数算法很难进行调整以获得理想结果。我们提出了一种在线尖峰分类框架,该框架使用特征归一化和加权来最大化不同尖峰形状之间的差异。此外,应用多个标准来促进或防止聚类融合,从而使实验人员能够对分类过程进行微调。我们通过使用两种不同的评分系统(AMI和阿达莫斯度量)来检验它们在对各种测试数据集进行分类时的性能,将我们的方法与已有的无监督离线算法(Wave_Clus (WC))和在线算法(OSort (OS))进行比较。此外,我们使用既定的质量指标评估术中记录的分类能力。与WC和OS相比,我们的算法平均得分相当或更高,并且为术中数据集产生了更令人信服的分类结果。因此,所提出的框架适用于在线和离线分析,并且可以显著提高基于微电极的数据评估在研究和临床应用中的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验