University Eye Hospital, Freiburg, Germany.
Invest Ophthalmol Vis Sci. 2011 Jul 23;52(8):5457-64. doi: 10.1167/iovs.10-6806.
Spontaneous venous pulsation is one of the clinical signs with which to rule out elevated intracranial pressure and papilledema. More subtle pulsatile retinal movements are difficult to observe because of eye movements. Recording a fundus movie and aligning (registering) the images helps, but the images still contain distracting microsaccadic distortions and noise. The authors hypothesized that addressing these latter points should allow observation of minute pulsating features in fundus movies.
Principal component analysis (PCA), a basic form of blind source analysis, is applied to recorded fundus image sequences. The authors demonstrate this method in 5-second image sequences acquired with a near-infrared SLO (HRA+OCT Spectralis). The images are first registered to correct for eye drift, then microsaccade-distorted images are rejected, and the remaining image sequence is decomposed into principal components. Finally, a movie is constructed using the first five principal components (these had pulsatile features).
Each of the processing steps (registration, cleaning, PCA filtering) improves the detection of pulsatile features, ultimately allowing clear visualization of spontaneous venous pulsation. Depending on the subject, additional features can be observed: pulsation amplitude of the arterial tree of approximately 10 μm, pulsation of arterioles down to 70-μm diameter, complete venous collapse, overall optic nerve head tissue pulsation, and mechanical links between veins and arteries.
By disentangling pulsatile motion from other dynamic components of retinal images, unprecedented resolution in physiologic motion of retinal vessel structure is achievable.
自发性静脉搏动是排除颅内压升高和视盘水肿的临床体征之一。由于眼球运动,更细微的搏动性视网膜运动很难观察到。记录眼底电影并对齐(注册)图像有助于观察,但图像仍然包含分散注意力的微扫视扭曲和噪声。作者假设解决这些问题应该可以观察到眼底电影中微小的搏动特征。
主成分分析(PCA)是一种基本形式的盲源分析,应用于记录的眼底图像序列。作者在近红外 SLO(HRA+OCT Spectralis)获得的 5 秒图像序列中演示了这种方法。首先对图像进行注册以校正眼球漂移,然后拒绝微扫视失真的图像,并将剩余的图像序列分解为主成分。最后,使用前五个主成分(具有搏动特征)构建电影。
每个处理步骤(注册、清洁、PCA 滤波)都提高了搏动特征的检测能力,最终可以清晰地观察到自发性静脉搏动。根据受试者的不同,还可以观察到其他特征:动脉树的搏动幅度约为 10μm,直径为 70-μm 的小动脉搏动,静脉完全塌陷,整个视盘组织搏动,以及静脉和动脉之间的机械联系。
通过将搏动运动与视网膜图像的其他动态成分分离,可以实现视网膜血管结构的生理运动前所未有的分辨率。