Suppr超能文献

用于改善微生物戊糖发酵的代谢工程

Metabolic engineering for improved microbial pentose fermentation.

作者信息

Fernandes Sara, Murray Patrick

机构信息

IBB-Institute for Biotechnology and Bioengineering; Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.

出版信息

Bioeng Bugs. 2010 Nov-Dec;1(6):424-8. doi: 10.4161/bbug.1.6.12724.

Abstract

Global concern over the depletion of fossil fuel reserves, and the detrimental impact that combustion of these materials has on the environment, is focusing attention on initiatives to create sustainable approaches for the production and use of biofuels from various biomass substrates. The development of a low-cost, safe and eco-friendly process for the utilization of renewable resources to generate value-added products with biotechnological potential as well as robust microorganisms capable of efficient fermentation of all types of sugars are essential to underpin the economic production of biofuels from biomass feedstocks. Saccharomyces cerevisiae, the most established fermentation yeast used in large scale bioconversion strategies, does not however metabolise the pentose sugars, xylose and arabinose and bioengineering is required for introduction of efficient pentose metabolic pathways and pentose sugar transport proteins for bioconversion of these substrates. Our approach provided a basis for future experiments that may ultimately lead to the development of industrial S. cerevisiae strains engineered to express pentose metabolising proteins from thermophilic fungi living on decaying plant material and here we expand our original article and discuss the strategies implemented to improve pentose fermentation.

摘要

全球对化石燃料储备枯竭的担忧,以及这些材料燃烧对环境造成的有害影响,正促使人们将注意力集中在为从各种生物质底物生产和使用生物燃料创造可持续方法的倡议上。开发一种低成本、安全且环保的工艺,用于利用可再生资源生产具有生物技术潜力的增值产品,以及培育能够高效发酵各类糖类的强大微生物,对于支撑从生物质原料经济生产生物燃料至关重要。酿酒酵母是大规模生物转化策略中最成熟的发酵酵母,但它不能代谢戊糖(木糖和阿拉伯糖),因此需要进行生物工程改造,引入高效的戊糖代谢途径和戊糖转运蛋白,以实现这些底物的生物转化。我们的方法为未来的实验提供了基础,这些实验最终可能会促成工业用酿酒酵母菌株的开发,这些菌株经过工程改造,能够表达来自生活在腐烂植物材料上的嗜热真菌的戊糖代谢蛋白。在此,我们扩展了原始文章,并讨论了为改善戊糖发酵而实施的策略。

相似文献

1
Metabolic engineering for improved microbial pentose fermentation.
Bioeng Bugs. 2010 Nov-Dec;1(6):424-8. doi: 10.4161/bbug.1.6.12724.
2
Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
PLoS One. 2011;6(11):e27316. doi: 10.1371/journal.pone.0027316. Epub 2011 Nov 4.
3
Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae.
Biotechnol J. 2011 Mar;6(3):286-99. doi: 10.1002/biot.201000301. Epub 2011 Feb 9.
6
Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
Crit Rev Biotechnol. 2012 Mar;32(1):22-48. doi: 10.3109/07388551.2010.539551. Epub 2011 Jan 4.
7
[Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
Sheng Wu Gong Cheng Xue Bao. 2018 Oct 25;34(10):1543-1555. doi: 10.13345/j.cjb.180031.
9
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae.
Adv Biochem Eng Biotechnol. 2007;108:147-77. doi: 10.1007/10_2007_062.
10
A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
J Ind Microbiol Biotechnol. 2011 May;38(5):617-26. doi: 10.1007/s10295-010-0806-6. Epub 2010 Aug 17.

引用本文的文献

1
Biofuel production from starchy crops: advanced technology and current perspectives.
Arch Microbiol. 2025 Aug 11;207(9):220. doi: 10.1007/s00203-025-04428-7.
2
Xylose Metabolism and the Effect of Oxidative Stress on Lipid and Carotenoid Production in : Insights for Future Biorefinery.
Front Bioeng Biotechnol. 2020 Aug 19;8:1008. doi: 10.3389/fbioe.2020.01008. eCollection 2020.
4
l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial strain.
Biotechnol Biofuels. 2018 Aug 23;11:231. doi: 10.1186/s13068-018-1231-8. eCollection 2018.
6
Expression, Docking, and Molecular Dynamics of Endo--1,4-xylanase I Gene of in .
Biomed Res Int. 2017;2017:4658584. doi: 10.1155/2017/4658584. Epub 2017 Aug 10.
7
Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.
PLoS One. 2016 Jun 23;11(6):e0158111. doi: 10.1371/journal.pone.0158111. eCollection 2016.
9
Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory.
J Ind Microbiol Biotechnol. 2015 May;42(5):681-91. doi: 10.1007/s10295-015-1590-0. Epub 2015 Feb 5.

本文引用的文献

5
Towards industrial pentose-fermenting yeast strains.
Appl Microbiol Biotechnol. 2007 Apr;74(5):937-53. doi: 10.1007/s00253-006-0827-2. Epub 2007 Feb 9.
9
Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Oct;69(10):5892-7. doi: 10.1128/AEM.69.10.5892-5897.2003.
10
Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production.
Appl Environ Microbiol. 2003 Aug;69(8):4732-6. doi: 10.1128/AEM.69.8.4732-4736.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验