Suppr超能文献

使用标准标志物并将分子标志物纳入乳腺癌治疗:国际专家小组的共识建议。

Use of standard markers and incorporation of molecular markers into breast cancer therapy: Consensus recommendations from an International Expert Panel.

机构信息

Department of Obstetrics and Gynecology, Breast Unit, Goethe University, Frankfurt, Germany.

出版信息

Cancer. 2011 Apr 15;117(8):1575-82. doi: 10.1002/cncr.25660. Epub 2010 Nov 29.

Abstract

Breast cancer is a heterogeneous disease of different subtypes on the molecular, histopathological, and clinical level. Genomic profiling techniques have led to several prognostic and predictive gene signatures of breast cancer that may further refine outcome prediction, especially in clinically equivocal situations. In particular, the predictive value of today's most important therapeutic targets, ER and HER2, are strongly influenced by the proliferative status of the tumor. Genomic assays are generally performed in a centralized manner, whereas routine pathological evaluation is mostly done on a decentralized basis, making the comparison of these methods difficult. Thus, there remains considerable uncertainty about the use of the new molecular markers in routine clinical decision making and their role in patient selection or stratification for future clinical trials. To address this concern, a group of representatives from breast cancer research groups in the areas of breast pathology, genomic profiling, and clinical trials critically reviewed all available data. Consensus recommendations are made on the practical use of molecular markers in breast cancer management and their incorporation into future clinical trials.

摘要

乳腺癌是一种异质性疾病,在分子、组织病理学和临床水平上有不同的亚型。基因组分析技术已经产生了几种乳腺癌的预后和预测基因特征,这些特征可能进一步完善预后预测,尤其是在临床情况不确定的情况下。特别是,目前最重要的治疗靶点 ER 和 HER2 的预测价值受到肿瘤增殖状态的强烈影响。基因组检测通常以集中的方式进行,而常规的病理评估大多是分散进行的,这使得这些方法的比较变得困难。因此,在常规临床决策中使用新的分子标志物以及它们在未来临床试验中的患者选择或分层中的作用仍然存在相当大的不确定性。为了解决这一问题,一组来自乳腺癌研究小组的代表在乳腺病理学、基因组分析和临床试验领域对所有可用数据进行了批判性审查。就分子标志物在乳腺癌管理中的实际应用及其纳入未来临床试验提出了共识建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验