Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, USA.
Lab Chip. 2011 May 21;11(10):1786-94. doi: 10.1039/c0lc00709a. Epub 2011 Apr 8.
We report an integrated microfluidic device for fine-scale manipulation and confinement of micro- and nanoscale particles in free-solution. Using this device, single particles are trapped in a stagnation point flow at the junction of two intersecting microchannels. The hydrodynamic trap is based on active flow control at a fluid stagnation point using an integrated on-chip valve in a monolithic PDMS-based microfluidic device. In this work, we characterize device design parameters enabling precise control of stagnation point position for efficient trap performance. The microfluidic-based hydrodynamic trap facilitates particle trapping using the sole action of fluid flow and provides a viable alternative to existing confinement and manipulation techniques based on electric, optical, magnetic or acoustic force fields. Overall, the hydrodynamic trap enables non-contact confinement of fluorescent and non-fluorescent particles for extended times and provides a new platform for fundamental studies in biology, biotechnology and materials science.
我们报告了一种集成微流控装置,用于在自由溶液中对微纳米颗粒进行精细操作和限制。使用该装置,单个颗粒在两个相交微通道的交点处的停滞点流中被捕获。该流体动力陷阱基于在单个基于 PDMS 的微流控装置中的集成片上阀在流体停滞点处的主动流控制。在这项工作中,我们对器件设计参数进行了表征,这些参数能够精确控制停滞点位置,从而实现高效的陷阱性能。基于微流控的流体动力陷阱通过仅利用流体流动的作用来实现颗粒捕获,并为基于电、光、磁或声场的现有限制和操纵技术提供了可行的替代方案。总的来说,流体动力陷阱能够对荧光和非荧光颗粒进行非接触式限制,并且可以延长时间,为生物学、生物技术和材料科学的基础研究提供了新的平台。