Littlewood Peter B, Marchetti Francesca Maria, Szymańska Marzena H
University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK (E-mail:
J Phys Condens Matter. 2007 Jul 25;19(29):290301. doi: 10.1088/0953-8984/19/29/290301. Epub 2007 Jun 11.
Recent years have witnessed novel and exciting advances on the subject of optical coherence and collective phenomena in nanostructures. This volume overviews the forefront progress in this area, collecting nine reviews and ten new contributions by leading experts in the field. The subfields included in this volume span from two-dimensional electron gases, semiconductor excitons, coupled quantum wells, microcavity polaritons, quantum dots and quantum wires. One of the most exciting directions in coupled quantum wells is the possibility to explore novel quantum fluid phases of indirect excitons and the formation of spontaneous coherence. Strong light-matter interaction in semiconductor microcavities has lead to the ability of controlling, manipulating and detecting the matter properties by all optical means. Structures with reduced dimensionality, such as quantum dots and quantum wires, offer the possibility to explore novel physics and new applications for nanoscience technology. Finally, recent advances in probing and controlling spin and charge dynamics in two-dimensional electron gases open new perspectives towards spintronics. The intellectual and applied links between all these problems offer fascinating opportunities for further advances in this field. The editors would like to acknowledge the support of the EU Network `Photon mediated phenomena in semiconductor nanostructures' HPRN-CT-2002-00298 in the preparation of this volume.
近年来,纳米结构中的光学相干和集体现象这一主题取得了新颖且令人兴奋的进展。本书概述了该领域的前沿进展,汇集了九篇综述以及该领域顶尖专家的十篇新论文。本书涵盖的子领域包括二维电子气、半导体激子、耦合量子阱、微腔极化激元、量子点和量子线。耦合量子阱中最令人兴奋的方向之一是探索间接激子的新型量子流体相以及自发相干形成的可能性。半导体微腔中的强光 - 物质相互作用使得通过全光学手段控制、操纵和检测物质特性成为可能。诸如量子点和量子线等低维结构为探索纳米科学技术的新物理和新应用提供了可能性。最后,二维电子气中探测和控制自旋与电荷动力学的最新进展为自旋电子学开辟了新的前景。所有这些问题之间的学术和应用联系为该领域的进一步发展提供了迷人的机遇。编辑们在此感谢欧盟网络“半导体纳米结构中的光子介导现象”HPRN - CT - 2002 - 00298在本书编写过程中的支持。