Suppr超能文献

50 种构建纺锤体的方法:有丝分裂中微管生成的复杂性。

50 ways to build a spindle: the complexity of microtubule generation during mitosis.

机构信息

Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.

出版信息

Chromosome Res. 2011 Apr;19(3):321-33. doi: 10.1007/s10577-011-9205-8.

Abstract

The accurate segregation of duplicated chromosomes, essential for the development and viability of a eukaryotic organism, requires the formation of a robust microtubule (MT)-based spindle apparatus. Entry into mitosis or meiosis precipitates a cascade of signalling events which result in the activation of pathways responsible for a dramatic reorganisation of the MT cytoskeleton: through changes in the properties of MT-associated proteins, local concentrations of free tubulin dimer and through enhanced MT nucleation. The latter is generally thought to be driven by localisation and activation of γ-tubulin-containing complexes (γ-TuSC and γ-TuRC) at specific subcellular locations. For example, upon entering mitosis, animal cells concentrate γ-tubulin at centrosomes to tenfold the normal level during interphase, resulting in an aster-driven search and capture of chromosomes and bipolar mitotic spindle formation. Thus, in these cells, centrosomes have traditionally been perceived as the primary microtubule organising centre during spindle formation. However, studies in meiotic cells, plants and cell-free extracts have revealed the existence of complementary mechanisms of spindle formation, mitotic chromatin, kinetochores and nucleation from existing MTs or the cytoplasm can all contribute to a bipolar spindle apparatus. Here, we outline the individual known mechanisms responsible for spindle formation and formulate ideas regarding the relationship between them in assembling a functional spindle apparatus.

摘要

准确分离复制的染色体对于真核生物的发育和生存至关重要,这需要形成一个强大的微管(MT)为基础的纺锤体装置。进入有丝分裂或减数分裂会引发一连串的信号事件,导致负责 MT 细胞骨架剧烈重组的途径被激活:通过改变 MT 相关蛋白的特性、游离微管二聚体的局部浓度以及通过增强 MT 成核。后者通常被认为是由 γ-微管蛋白包含的复合物(γ-TuSC 和 γ-TuRC)在特定亚细胞位置的定位和激活所驱动的。例如,动物细胞在进入有丝分裂时,将 γ-微管蛋白集中在中心体,使其在间期的正常水平上增加十倍,导致星状驱动的染色体搜索和捕获以及双极纺锤体的形成。因此,在这些细胞中,中心体传统上被认为是纺锤体形成过程中的主要微管组织中心。然而,在减数分裂细胞、植物和无细胞提取物中的研究揭示了纺锤体形成的互补机制的存在,有丝分裂染色质、动粒和从现有 MT 或细胞质中进行的成核都可以为双极纺锤体装置做出贡献。在这里,我们概述了负责纺锤体形成的各个已知机制,并就它们在组装功能性纺锤体装置方面的关系提出了一些想法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验