Suppr超能文献

脑网络分析中的概念和原理。

Concepts and principles in the analysis of brain networks.

机构信息

1NeurologyRadiologyPediatricsAnatomy and Neurobiology, Washington University School of Medicine, St. Louis, MissouriDepartment of Psychology, Washington University, St. Louis, Missouri.

出版信息

Ann N Y Acad Sci. 2011 Apr;1224:126-146. doi: 10.1111/j.1749-6632.2010.05947.x.

Abstract

The brain is a large-scale network, operating at multiple levels of information processing ranging from neurons, to local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools with which to study networks. These tools can be employed to understand how the brain's behavioral repertoire is mediated by the interactions of objects of information processing. Within the graph-theoretic framework, networks are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review focuses on understanding these principles and how they guide what constitutes a brain network and its elements, specifically focusing on resting-state correlations in humans. We argue that approaches that fail to take the principles of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will likely mischaracterize brain network structure and function.

摘要

大脑是一个大规模的网络,在多个信息处理层次上运作,从神经元到局部回路,再到脑区系统。图论的最新进展为研究网络提供了工具。这些工具可以用来理解大脑的行为范围是如何通过信息处理对象的相互作用来介导的。在图论框架内,网络由独立的对象(节点)和它们之间共享的关系(边)定义。重要的是,要将图论准确地纳入大脑网络的研究中,就必须仔细考虑数学和潜在神经生物学的假设、约束和原则。本综述重点讨论了理解这些原则的重要性,以及它们如何指导构成大脑网络及其元素的方式,特别是专注于人类的静息状态相关性。我们认为,那些未能考虑图论原则且不能反映大脑潜在神经生物学特性的方法,很可能会错误地描述大脑网络的结构和功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验