Suppr超能文献

新生儿脑功能分区

Functional parcellation of the neonatal brain.

作者信息

Myers Michael J, Labonte Alyssa K, Gordon Evan M, Laumann Timothy O, Tu Jiaxin Cindy, Wheelock Muriah D, Nielsen Ashley N, Schwarzlose Rebecca, Camacho M Catalina, Warner Barbara B, Raghuraman Nandini, Luby Joan L, Barch Deanna M, Fair Damien A, Petersen Steven E, Rogers Cynthia E, Smyser Christopher D, Sylvester Chad M

机构信息

Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.

Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO USA.

出版信息

bioRxiv. 2023 Nov 11:2023.11.10.566629. doi: 10.1101/2023.11.10.566629.

Abstract

The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that adult- and older infant-derived parcels are a poor fit with neonatal data, emphasizing the need for neonatal-specific parcels. We next derive a set of 283 cortical surface parcels from a sample of n=261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.

摘要

大脑皮层被组织成不同但相互连接的皮层区域,这些区域可通过整个皮层表面静息态功能连接(FC)模式的突然差异来定义。这种皮层的划分已在成人和较大婴儿中得出,但尚无广泛应用于新生儿大脑的表面划分方法。在此,我们首先证明,源自成人和较大婴儿的脑区划分与新生儿数据不太匹配,强调了需要针对新生儿的特定脑区划分。接下来,我们从n = 261名新生儿的样本中得出了一组283个皮层表面脑区。这些脑区具有高度同质的FC模式,并使用三个外部新生儿数据集进行了验证。Infomap算法用于为每个脑区分配功能网络标识,得出的网络与之前关于新生儿的研究工作一致。所提出的脑区划分可能代表新生儿皮层区域,并为新生儿神经影像学研究提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa2d/10659431/839991ec09b1/nihpp-2023.11.10.566629v1-f0001.jpg

相似文献

1
Functional parcellation of the neonatal brain.
bioRxiv. 2023 Nov 11:2023.11.10.566629. doi: 10.1101/2023.11.10.566629.
2
Functional parcellation of the neonatal cortical surface.
Cereb Cortex. 2024 Jan 31;34(2). doi: 10.1093/cercor/bhae047.
3
Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations.
Cereb Cortex. 2016 Jan;26(1):288-303. doi: 10.1093/cercor/bhu239. Epub 2014 Oct 14.
4
Individual parcellation of resting fMRI with a group functional connectivity prior.
Neuroimage. 2017 Aug 1;156:87-100. doi: 10.1016/j.neuroimage.2017.04.054. Epub 2017 May 3.
5
Fine-grained functional parcellation maps of the infant cerebral cortex.
Elife. 2023 Aug 1;12:e75401. doi: 10.7554/eLife.75401.
6
Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI.
bioRxiv. 2024 Jan 17:2024.01.05.574423. doi: 10.1101/2024.01.05.574423.
7
Cohesive parcellation of the human brain using resting-state fMRI.
J Neurosci Methods. 2022 Jul 15;377:109629. doi: 10.1016/j.jneumeth.2022.109629. Epub 2022 May 23.
8
A sub+cortical fMRI-based surface parcellation.
Hum Brain Mapp. 2022 Feb 1;43(2):616-632. doi: 10.1002/hbm.25675. Epub 2021 Nov 11.
9
Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI.
Cereb Cortex. 2018 Sep 1;28(9):3095-3114. doi: 10.1093/cercor/bhx179.
10
Atlas-guided parcellation: Individualized functionally-homogenous parcellation in cerebral cortex.
Comput Biol Med. 2022 Nov;150:106078. doi: 10.1016/j.compbiomed.2022.106078. Epub 2022 Sep 10.

本文引用的文献

1
Fine-grained functional parcellation maps of the infant cerebral cortex.
Elife. 2023 Aug 1;12:e75401. doi: 10.7554/eLife.75401.
2
Prenatal exposure to maternal social disadvantage and psychosocial stress and neonatal white matter connectivity at birth.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2204135119. doi: 10.1073/pnas.2204135119. Epub 2022 Oct 11.
3
Maturation of large-scale brain systems over the first month of life.
Cereb Cortex. 2023 Mar 10;33(6):2788-2803. doi: 10.1093/cercor/bhac242.
4
Real-time motion monitoring improves functional MRI data quality in infants.
Dev Cogn Neurosci. 2022 Jun;55:101116. doi: 10.1016/j.dcn.2022.101116. Epub 2022 May 21.
5
Network-specific selectivity of functional connections in the neonatal brain.
Cereb Cortex. 2023 Feb 20;33(5):2200-2214. doi: 10.1093/cercor/bhac202.
6
Brain charts for the human lifespan.
Nature. 2022 Apr;604(7906):525-533. doi: 10.1038/s41586-022-04554-y. Epub 2022 Apr 6.
7
Individual variability in functional organization of the neonatal brain.
Neuroimage. 2022 Jun;253:119101. doi: 10.1016/j.neuroimage.2022.119101. Epub 2022 Mar 15.
8
Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology.
Neuron. 2021 Sep 15;109(18):2820-2846. doi: 10.1016/j.neuron.2021.06.016. Epub 2021 Jul 15.
9
Neonatal Brain Response to Deviant Auditory Stimuli and Relation to Maternal Trait Anxiety.
Am J Psychiatry. 2021 Aug 1;178(8):771-778. doi: 10.1176/appi.ajp.2020.20050672. Epub 2021 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验