Suppr超能文献

从癌前病变的蛋白质组分析诊断肺癌。

Lung cancer diagnosis from proteomic analysis of preinvasive lesions.

机构信息

Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6838, USA.

出版信息

Cancer Res. 2011 Apr 15;71(8):3009-17. doi: 10.1158/0008-5472.CAN-10-2510. Epub 2011 Apr 12.

Abstract

Early detection may help improve survival from lung cancer. In this study, our goal was to derive and validate a signature from the proteomic analysis of bronchial lesions that could predict the diagnosis of lung cancer. Using previously published studies of bronchial tissues, we selected a signature of nine matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) mass-to-charge ratio features to build a prediction model diagnostic of lung cancer. The model was based on MALDI MS signal intensity (MALDI score) from bronchial tissue specimens from our 2005 published cohort of 51 patients. The performance of the prediction model in identifying lung cancer was tested in an independent cohort of bronchial specimens from 60 patients. The probability of having lung cancer based on the proteomic analysis of the bronchial specimens was characterized by an area under the receiver operating characteristic curve of 0.77 (95% CI 0.66-0.88) in this validation cohort. Eight of the nine features were identified and validated by Western blotting and immunohistochemistry. These results show that proteomic analysis of endobronchial lesions may facilitate the diagnosis of lung cancer and the monitoring of high-risk individuals for lung cancer in surveillance and chemoprevention trials.

摘要

早期发现可能有助于提高肺癌的生存率。在这项研究中,我们的目标是从支气管病变的蛋白质组分析中得出并验证一个能够预测肺癌诊断的特征。我们使用先前发表的支气管组织研究,选择了一组 9 个基质辅助激光解吸电离质谱(MALDI MS)质荷比特征的特征,以建立一个预测肺癌的诊断模型。该模型基于我们 2005 年发表的 51 名患者队列中支气管组织标本的 MALDI MS 信号强度(MALDI 评分)。该预测模型在识别肺癌方面的性能在 60 名患者的独立支气管标本队列中进行了测试。基于支气管标本的蛋白质组分析,肺癌的可能性由验证队列中受试者工作特征曲线下的面积为 0.77(95%置信区间 0.66-0.88)来描述。这 9 个特征中的 8 个通过 Western blot 和免疫组织化学得到了鉴定和验证。这些结果表明,支气管内病变的蛋白质组分析可能有助于肺癌的诊断,并有助于在监测和化学预防试验中对肺癌高危个体进行监测。

相似文献

1
Lung cancer diagnosis from proteomic analysis of preinvasive lesions.从癌前病变的蛋白质组分析诊断肺癌。
Cancer Res. 2011 Apr 15;71(8):3009-17. doi: 10.1158/0008-5472.CAN-10-2510. Epub 2011 Apr 12.
2
Proteomic patterns of preinvasive bronchial lesions.侵袭前支气管病变的蛋白质组学模式。
Am J Respir Crit Care Med. 2005 Dec 15;172(12):1556-62. doi: 10.1164/rccm.200502-274OC. Epub 2005 Sep 22.
10

引用本文的文献

4
Assay Performance of a Label-Free, Solution-Phase CYFRA 21-1 Determination.无标记溶液相CYFRA 21-1检测的分析性能
ACS Omega. 2022 Aug 29;7(36):31916-31923. doi: 10.1021/acsomega.2c02763. eCollection 2022 Sep 13.

本文引用的文献

1
Global cancer statistics.全球癌症统计数据。
CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90. doi: 10.3322/caac.20107. Epub 2011 Feb 4.
4
Preinvasive lesions of the bronchus.支气管的浸润前病变
J Thorac Oncol. 2009 Apr;4(4):545-51. doi: 10.1097/JTO.0b013e31819667bd.
5
A novel comprehensive wave-form MS data processing method.一种新颖的综合波形质谱数据处理方法。
Bioinformatics. 2009 Mar 15;25(6):808-14. doi: 10.1093/bioinformatics/btp060. Epub 2009 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验