Suppr超能文献

使用深度学习神经网络对全切片组织图像和基质辅助激光解吸电离质谱成像进行多模态肺癌亚型分析。

Multimodal Lung Cancer Subtyping Using Deep Learning Neural Networks on Whole Slide Tissue Images and MALDI MSI.

作者信息

Janßen Charlotte, Boskamp Tobias, Le'Clerc Arrastia Jean, Otero Baguer Daniel, Hauberg-Lotte Lena, Kriegsmann Mark, Kriegsmann Katharina, Steinbuß Georg, Casadonte Rita, Kriegsmann Jörg, Maaß Peter

机构信息

Center for Industrial Mathematics (ZeTeM), University of Bremen, 28359 Bremen, Germany.

Bruker Daltonics, 28359 Bremen, Germany.

出版信息

Cancers (Basel). 2022 Dec 14;14(24):6181. doi: 10.3390/cancers14246181.

Abstract

Artificial intelligence (AI) has shown potential for facilitating the detection and classification of tumors. In patients with non-small cell lung cancer, distinguishing between the most common subtypes, adenocarcinoma (ADC) and squamous cell carcinoma (SqCC), is crucial for the development of an effective treatment plan. This task, however, may still present challenges in clinical routine. We propose a two-modality, AI-based classification algorithm to detect and subtype tumor areas, which combines information from matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) data and digital microscopy whole slide images (WSIs) of lung tissue sections. The method consists of first detecting areas with high tumor cell content by performing a segmentation of the hematoxylin and eosin-stained (H&E-stained) WSIs, and subsequently classifying the tumor areas based on the corresponding MALDI MSI data. We trained the algorithm on six tissue microarrays (TMAs) with tumor samples from N = 232 patients and used 14 additional whole sections for validation and model selection. Classification accuracy was evaluated on a test dataset with another 16 whole sections. The algorithm accurately detected and classified tumor areas, yielding a test accuracy of 94.7% on spectrum level, and correctly classified 15 of 16 test sections. When an additional quality control criterion was introduced, a 100% test accuracy was achieved on sections that passed the quality control (14 of 16). The presented method provides a step further towards the inclusion of AI and MALDI MSI data into clinical routine and has the potential to reduce the pathologist's work load. A careful analysis of the results revealed specific challenges to be considered when training neural networks on data from lung cancer tissue.

摘要

人工智能(AI)已显示出促进肿瘤检测和分类的潜力。在非小细胞肺癌患者中,区分最常见的亚型——腺癌(ADC)和鳞状细胞癌(SqCC),对于制定有效的治疗方案至关重要。然而,这项任务在临床常规中可能仍存在挑战。我们提出了一种基于AI的双模态分类算法,用于检测肿瘤区域并对其进行亚型分类,该算法结合了来自基质辅助激光解吸/电离(MALDI)质谱成像(MSI)数据和肺组织切片数字显微镜全切片图像(WSIs)的信息。该方法首先通过对苏木精和伊红染色(H&E染色)的WSIs进行分割来检测肿瘤细胞含量高的区域,随后根据相应的MALDI MSI数据对肿瘤区域进行分类。我们在来自N = 232例患者的肿瘤样本的六个组织微阵列(TMA)上训练了该算法,并使用另外14个全切片进行验证和模型选择。在另一个包含16个全切片的测试数据集上评估分类准确性。该算法准确地检测和分类了肿瘤区域,在光谱水平上的测试准确率为94.7%,并正确分类了16个测试切片中的15个。当引入额外的质量控制标准时,在通过质量控制的切片(16个中的14个)上实现了100%的测试准确率。所提出的方法朝着将AI和MALDI MSI数据纳入临床常规又迈进了一步,并且有可能减轻病理学家的工作量。对结果的仔细分析揭示了在基于肺癌组织数据训练神经网络时需要考虑的特定挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/775d/9776684/923b548d13e5/cancers-14-06181-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验