Suppr超能文献

贝叶斯隐马尔可夫模型在阿尔茨海默病病理划分中的应用。

Bayesian hidden Markov models for delineating the pathology of Alzheimer's disease.

机构信息

1 Department of Statistics, Chinese University of Hong Kong, Hong Kong, China.

2 Department of Statistics, Sun Yat-sen University, Guangzhou, China.

出版信息

Stat Methods Med Res. 2019 Jul;28(7):2112-2124. doi: 10.1177/0962280217748675. Epub 2017 Dec 26.

Abstract

Alzheimer's disease is a firmly incurable and progressive disease. The pathology of Alzheimer's disease usually evolves from cognitive normal, to mild cognitive impairment, to Alzheimer's disease. The aim of this paper is to develop a Bayesian hidden Markov model to characterize disease pathology, identify hidden states corresponding to the diagnosed stages of cognitive decline, and examine the dynamic changes of potential risk factors associated with the cognitive normal-mild cognitive impairment-Alzheimer's disease transition. The hidden Markov model framework consists of two major components. The first one is a state-dependent semiparametric regression for delineating the complex associations between clinical outcomes of interest and a set of prognostic biomarkers across neurodegenerative states. The second one is a parametric transition model, while accounting for potential covariate effects on the cross-state transition. The inter-individual and inter-process differences are taken into account via correlated random effects in both components. Based on the Alzheimer's Disease Neuroimaging Initiative data set, we are able to identify four states of Alzheimer's disease pathology, corresponding to common diagnosed cognitive decline stages, including cognitive normal, early mild cognitive impairment, late mild cognitive impairment, and Alzheimer's disease and examine the effects of hippocampus, age, gender, and APOE- on degeneration of cognitive function across the four cognitive states.

摘要

阿尔茨海默病是一种无法治愈且会逐渐恶化的疾病。阿尔茨海默病的病理变化通常从认知正常发展到轻度认知障碍,再发展到阿尔茨海默病。本文旨在开发一种贝叶斯隐马尔可夫模型,以描述疾病的病理变化,识别与认知能力下降的诊断阶段相对应的隐藏状态,并研究与认知正常-轻度认知障碍-阿尔茨海默病转变相关的潜在风险因素的动态变化。隐马尔可夫模型框架由两个主要部分组成。第一部分是一个状态相关的半参数回归,用于描绘感兴趣的临床结果与一组神经退行性状态下的预后生物标志物之间的复杂关系。第二部分是一个参数转移模型,同时考虑了潜在协变量对跨状态转移的影响。两个部分都通过相关的随机效应考虑了个体间和过程间的差异。基于阿尔茨海默病神经影像学倡议数据集,我们能够识别出阿尔茨海默病病理的四个状态,分别对应于常见的诊断认知下降阶段,包括认知正常、早期轻度认知障碍、晚期轻度认知障碍和阿尔茨海默病,并研究了海马体、年龄、性别和 APOE-在四个认知状态下对认知功能退化的影响。

相似文献

1
Bayesian hidden Markov models for delineating the pathology of Alzheimer's disease.
Stat Methods Med Res. 2019 Jul;28(7):2112-2124. doi: 10.1177/0962280217748675. Epub 2017 Dec 26.
2
Bayesian adaptive group lasso with semiparametric hidden Markov models.
Stat Med. 2019 Apr 30;38(9):1634-1650. doi: 10.1002/sim.8051. Epub 2018 Nov 28.
4
Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer's disease.
Brain. 2015 Nov;138(Pt 11):3373-85. doi: 10.1093/brain/awv267. Epub 2015 Sep 15.
5
Order selection for heterogeneous semiparametric hidden Markov models.
Stat Med. 2024 Jun 15;43(13):2501-2526. doi: 10.1002/sim.10069. Epub 2024 Apr 15.
6
A data-driven model of biomarker changes in sporadic Alzheimer's disease.
Brain. 2014 Sep;137(Pt 9):2564-77. doi: 10.1093/brain/awu176. Epub 2014 Jul 9.
7
MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers.
Brain. 2009 Apr;132(Pt 4):1067-77. doi: 10.1093/brain/awp007. Epub 2009 Feb 27.
9
Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease.
Stat Methods Med Res. 2019 Feb;28(2):327-342. doi: 10.1177/0962280217722177. Epub 2017 Jul 28.
10
Disease progression modeling using Hidden Markov Models.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2845-8. doi: 10.1109/EMBC.2012.6346556.

引用本文的文献

1
Predictors of Cognitive Decline in Alzheimer's Disease: A Longitudinal Bayesian Analysis.
Medicina (Kaunas). 2025 May 11;61(5):877. doi: 10.3390/medicina61050877.
4
A Review on Phyto-Therapeutic Approaches in Alzheimer's Disease.
J Funct Biomater. 2023 Jan 16;14(1):50. doi: 10.3390/jfb14010050.
6
Bayesian adaptive group lasso with semiparametric hidden Markov models.
Stat Med. 2019 Apr 30;38(9):1634-1650. doi: 10.1002/sim.8051. Epub 2018 Nov 28.

本文引用的文献

1
Hidden Markov latent variable models with multivariate longitudinal data.
Biometrics. 2017 Mar;73(1):313-323. doi: 10.1111/biom.12536. Epub 2016 May 5.
3
Discrete Latent Markov Models for Normally Distributed Response Data.
Multivariate Behav Res. 2005 Oct 1;40(4):461-88. doi: 10.1207/s15327906mbr4004_4.
5
Regime-Switching Bivariate Dual Change Score Model.
Multivariate Behav Res. 2013 Jul;48(4):463-502. doi: 10.1080/00273171.2013.787870.
7
Partially ordered mixed hidden Markov model for the disablement process of older adults.
J Am Stat Assoc. 2013 Jun 1;108(502):370-380. doi: 10.1080/01621459.2013.770307.
8
Focal hemosiderin deposits and β-amyloid load in the ADNI cohort.
Alzheimers Dement. 2013 Oct;9(5 Suppl):S116-23. doi: 10.1016/j.jalz.2012.10.011. Epub 2013 Jan 30.
10
Application of hidden Markov models to multiple sclerosis lesion count data.
Stat Med. 2005 Aug 15;24(15):2335-44. doi: 10.1002/sim.2108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验