Suppr超能文献

基于机器学习的失语症和非失语症患者分类方法比较。

Comparison of machine learning methods for classifying aphasic and non-aphasic speakers.

机构信息

University of Tampere, Department of Information Studies and Interactive Media, FI-33014 University of Tampere, Finland.

出版信息

Comput Methods Programs Biomed. 2011 Dec;104(3):349-57. doi: 10.1016/j.cmpb.2011.02.015. Epub 2011 Apr 14.

Abstract

The performance of eight machine learning classifiers were compared with three aphasia related classification problems. The first problem contained naming data of aphasic and non-aphasic speakers tested with the Philadelphia Naming Test. The second problem included the naming data of Alzheimer and vascular disease patients tested with Finnish version of the Boston Naming Test. The third problem included aphasia test data of patients suffering from four different aphasic syndromes tested with the Aachen Aphasia Test. The first two data sets were small. Therefore, the data used in the tests were artificially generated from the original confrontation naming data of 23 and 22 subjects, respectively. The third set contained aphasia test data of 146 aphasic speakers and was used as such in the experiments. With the first and the third data set the classifiers could successfully be used for the task, while the results with the second data set were less encouraging. However, based on the results, no single classifier performed exceptionally well with all data sets, suggesting that the selection of the classifier used for classification of aphasic data should be based on the experiments performed with the data set at hand.

摘要

比较了八种机器学习分类器在三个与失语症相关的分类问题上的性能。第一个问题包含了使用费城命名测试测试的失语症和非失语症患者的命名数据。第二个问题包括使用芬兰版波士顿命名测试测试的阿尔茨海默病和血管疾病患者的命名数据。第三个问题包括了使用 Aachen 失语症测试测试的患有四种不同失语症综合征的患者的失语症测试数据。前两个数据集较小。因此,测试中使用的数据是分别从 23 名和 22 名受试者的原始对抗命名数据人工生成的。第三个数据集包含了 146 名失语症患者的失语症测试数据,并在实验中直接使用。对于第一个和第三个数据集,分类器可以成功地用于该任务,而对于第二个数据集的结果则不那么令人鼓舞。然而,根据结果,没有一个分类器在所有数据集上都表现出色,这表明用于失语症数据分类的分类器的选择应该基于手头数据集的实验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验