Department of Biomedical Engineering, Shantou University, Shantou 515063, China.
Computer and Information Technology Department, IT Institute @ Phoenix College, Phoenix, AZ 85013, USA.
Sensors (Basel). 2023 Jan 11;23(2):857. doi: 10.3390/s23020857.
The rehabilitation of aphasics is fundamentally based on the assessment of speech impairment. Developing methods for assessing speech impairment automatically is important due to the growing number of stroke cases each year. Traditionally, aphasia is assessed manually using one of the well-known assessment batteries, such as the Western Aphasia Battery (WAB), the Chinese Rehabilitation Research Center Aphasia Examination (CRRCAE), and the Boston Diagnostic Aphasia Examination (BDAE). In aphasia testing, a speech-language pathologist (SLP) administers multiple subtests to assess people with aphasia (PWA). The traditional assessment is a resource-intensive process that requires the presence of an SLP. Thus, automating the assessment of aphasia is essential. This paper evaluated and compared custom machine learning (ML) speech recognition algorithms against off-the-shelf platforms using healthy and aphasic speech datasets on the naming and repetition subtests of the aphasia battery. Convolutional neural networks (CNN) and linear discriminant analysis (LDA) are the customized ML algorithms, while Microsoft Azure and Google speech recognition are off-the-shelf platforms. The results of this study demonstrated that CNN-based speech recognition algorithms outperform LDA and off-the-shelf platforms. The ResNet-50 architecture of CNN yielded an accuracy of 99.64 ± 0.26% on the healthy dataset. Even though Microsoft Azure was not trained on the same healthy dataset, it still generated comparable results to the LDA and superior results to Google's speech recognition platform.
失语症患者的康复治疗主要基于言语障碍的评估。由于每年中风病例的不断增加,自动开发言语障碍评估方法非常重要。传统上,通过使用广为人知的评估量表之一(如西方失语症量表 (WAB)、中国康复研究中心失语症检查表 (CRRCAE) 和波士顿诊断性失语症检查 (BDAE))来手动评估失语症。在失语症测试中,言语治疗师 (SLP) 通过多项子测试评估失语症患者 (PWA)。传统评估是一个资源密集型过程,需要 SLP 的参与。因此,自动化失语症评估至关重要。本文使用失语症电池的命名和重复子测试中的健康和失语症语音数据集,评估和比较了针对定制机器学习 (ML) 语音识别算法和现成平台的比较。卷积神经网络 (CNN) 和线性判别分析 (LDA) 是定制的 ML 算法,而 Microsoft Azure 和 Google 语音识别是现成的平台。这项研究的结果表明,基于 CNN 的语音识别算法优于 LDA 和现成的平台。CNN 的 ResNet-50 架构在健康数据集上的准确率为 99.64 ± 0.26%。尽管 Microsoft Azure 没有在相同的健康数据上进行训练,但它仍然产生了与 LDA 相当的结果,并且优于 Google 的语音识别平台。