Suppr超能文献

两个病原体响应的 MAPK 通过磷酸化 WRKY 转录因子驱动拟南芥的植保素生物合成。

Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis.

机构信息

Department of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Plant Cell. 2011 Apr;23(4):1639-53. doi: 10.1105/tpc.111.084996. Epub 2011 Apr 15.

Abstract

Plant sensing of invading pathogens triggers massive metabolic reprogramming, including the induction of secondary antimicrobial compounds known as phytoalexins. We recently reported that MPK3 and MPK6, two pathogen-responsive mitogen-activated protein kinases, play essential roles in the induction of camalexin, the major phytoalexin in Arabidopsis thaliana. In search of the transcription factors downstream of MPK3/MPK6, we found that WRKY33 is required for MPK3/MPK6-induced camalexin biosynthesis. In wrky33 mutants, both gain-of-function MPK3/MPK6- and pathogen-induced camalexin production are compromised, which is associated with the loss of camalexin biosynthetic gene activation. WRKY33 is a pathogen-inducible transcription factor, whose expression is regulated by the MPK3/MPK6 cascade. Chromatin immunoprecipitation assays reveal that WRKY33 binds to its own promoter in vivo, suggesting a potential positive feedback regulatory loop. Furthermore, WRKY33 is a substrate of MPK3/MPK6. Mutation of MPK3/MPK6 phosphorylation sites in WRKY33 compromises its ability to complement the camalexin induction in the wrky33 mutant. Using a phospho-protein mobility shift assay, we demonstrate that WRKY33 is phosphorylated by MPK3/MPK6 in vivo in response to Botrytis cinerea infection. Based on these data, we conclude that WRKY33 functions downstream of MPK3/MPK6 in reprogramming the expression of camalexin biosynthetic genes, which drives the metabolic flow to camalexin production in Arabidopsis challenged by pathogens.

摘要

植物感应入侵病原体可引发大规模代谢重编程,包括诱导次级抗菌化合物,即植物抗毒素。我们最近报道,病原体反应性丝裂原活化蛋白激酶(MAPK)MPK3 和 MPK6 在诱导拟南芥中的主要植物抗毒素 camalexin 的表达中发挥重要作用。在寻找 MPK3/MPK6 下游的转录因子时,我们发现 WRKY33 是 MPK3/MPK6 诱导的 camalexin 生物合成所必需的。在 wrky33 突变体中,功能获得性 MPK3/MPK6-和病原体诱导的 camalexin 产生都受到损害,这与 camalexin 生物合成基因激活的丧失有关。WRKY33 是一种病原体诱导型转录因子,其表达受 MPK3/MPK6 级联调控。染色质免疫沉淀分析显示 WRKY33 在体内与自身启动子结合,表明存在潜在的正反馈调节环。此外,WRKY33 是 MPK3/MPK6 的底物。WRKY33 中 MPK3/MPK6 磷酸化位点的突变会损害其在 wrky33 突变体中补充 camalexin 诱导的能力。通过磷酸蛋白迁移率变动分析,我们证明 WRKY33 在活体中可被 MPK3/MPK6 磷酸化,以响应 Botrytis cinerea 感染。基于这些数据,我们得出结论,WRKY33 在 MPK3/MPK6 下游重新编程 camalexin 生物合成基因的表达中发挥作用,这推动了拟南芥在受到病原体攻击时向 camalexin 生产的代谢流。

相似文献

6
Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways.
J Integr Plant Biol. 2020 Nov;62(11):1780-1796. doi: 10.1111/jipb.12973. Epub 2020 Jun 26.
7
Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis.
Plant J. 2010 Oct;64(1):114-27. doi: 10.1111/j.1365-313X.2010.04318.x. Epub 2010 Aug 31.
8
A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis.
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5638-43. doi: 10.1073/pnas.0711301105. Epub 2008 Mar 31.
10
A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance.
Plant Cell. 2018 Oct;30(10):2480-2494. doi: 10.1105/tpc.18.00547. Epub 2018 Sep 18.

引用本文的文献

2
Wounding and Phospholipase C Inhibition: Evaluation of the Alkaloid Profiling in Opium Poppy.
Plants (Basel). 2025 May 8;14(10):1413. doi: 10.3390/plants14101413.
3
Flagellin sensing, signaling, and immune responses in plants.
Plant Commun. 2025 Jul 14;6(7):101383. doi: 10.1016/j.xplc.2025.101383. Epub 2025 May 20.
4
7
Phosphorylation of MdWRKY70L by MdMPK6/02G mediates reactive oxygen accumulation to regulate apple fruit senescence.
Plant Biotechnol J. 2025 Jun;23(6):2386-2399. doi: 10.1111/pbi.70067. Epub 2025 Mar 24.
8
GmAKT1-mediated K absorption positively modulates soybean salt tolerance by GmCBL9-GmCIPK6 complex.
Plant Biotechnol J. 2025 Jun;23(6):2276-2289. doi: 10.1111/pbi.70042. Epub 2025 Mar 20.
10
Infiltration-RNAseq Reveals Enhanced Defense Responses in Leaves Overexpressing the Banana Gene .
Plants (Basel). 2025 Feb 6;14(3):483. doi: 10.3390/plants14030483.

本文引用的文献

1
Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis.
Plant J. 2010 Oct;64(1):114-27. doi: 10.1111/j.1365-313X.2010.04318.x. Epub 2010 Aug 31.
2
Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin.
Mol Plant Pathol. 2004 Mar 1;5(2):125-35. doi: 10.1111/j.1364-3703.2004.00215.x.
3
WRKY transcription factors.
Trends Plant Sci. 2010 May;15(5):247-58. doi: 10.1016/j.tplants.2010.02.006. Epub 2010 Mar 19.
4
Phytoalexin detoxification: importance for pathogenicity and practical implications.
Annu Rev Phytopathol. 1989;27:143-64. doi: 10.1146/annurev.py.27.090189.001043.
6
Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4.
Cell Host Microbe. 2010 Feb 18;7(2):164-75. doi: 10.1016/j.chom.2010.01.009.
8
The role of WRKY transcription factors in plant immunity.
Plant Physiol. 2009 Aug;150(4):1648-55. doi: 10.1104/pp.109.138990. Epub 2009 May 6.
9
Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling.
Proc Natl Acad Sci U S A. 2009 May 12;106(19):8067-72. doi: 10.1073/pnas.0810206106. Epub 2009 Apr 29.
10
Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana.
Plant Cell. 2009 Mar;21(3):944-53. doi: 10.1105/tpc.108.062158. Epub 2009 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验