Suppr超能文献

拟南芥中乙烯、茉莉酸和 MAPK 信号通路对植保素生物合成的多层协同调控。

Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis.

机构信息

Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.

出版信息

Plant Cell. 2022 Jul 30;34(8):3066-3087. doi: 10.1093/plcell/koac139.

Abstract

Camalexin, an indolic antimicrobial metabolite, is the major phytoalexin in Arabidopsis thaliana, and plays a crucial role in pathogen resistance. Our previous studies revealed that the Arabidopsis mitogen-activated protein kinases MPK3 and MPK6 positively regulate pathogen-induced camalexin biosynthesis via phosphoactivating the transcription factor WRKY33. Here, we report that the ethylene and jasmonate (JA) pathways act synergistically with the MPK3/MPK6-WRKY33 module at multiple levels to induce camalexin biosynthesis in Arabidopsis upon pathogen infection. The ETHYLENE RESPONSE FACTOR1 (ERF1) transcription factor integrates the ethylene and JA pathways to induce camalexin biosynthesis via directly upregulating camalexin biosynthetic genes. ERF1 also interacts with and depends on WRKY33 to upregulate camalexin biosynthetic genes, indicating that ERF1 and WRKY33 form transcriptional complexes to cooperatively activate camalexin biosynthetic genes, thereby mediating the synergy of ethylene/JA and MPK3/MPK6 signaling pathways to induce camalexin biosynthesis. Moreover, as an integrator of the ethylene and JA pathways, ERF1 also acts as a substrate of MPK3/MPK6, which phosphorylate ERF1 to increase its transactivation activity and therefore further cooperate with the ethylene/JA pathways to induce camalexin biosynthesis. Taken together, our data reveal the multilayered synergistic regulation of camalexin biosynthesis by ethylene, JA, and MPK3/MPK6 signaling pathways via ERF1 and WRKY33 transcription factors in Arabidopsis.

摘要

卡马西林是一种吲哚类抗菌代谢物,是拟南芥中的主要植物抗毒素,在病原体抗性中发挥着关键作用。我们之前的研究表明,拟南芥丝裂原活化蛋白激酶 MPK3 和 MPK6 通过磷酸化转录因子 WRKY33 正向调控病原体诱导的卡马西林生物合成。在这里,我们报告称,乙烯和茉莉酸(JA)途径与 MPK3/MPK6-WRKY33 模块在多个层面上协同作用,以在病原体感染后诱导拟南芥中卡马西林的生物合成。ETHYLENE RESPONSE FACTOR1 (ERF1) 转录因子整合乙烯和 JA 途径,通过直接上调卡马西林生物合成基因来诱导卡马西林的生物合成。ERF1 还与 WRKY33 相互作用并依赖 WRKY33 来上调卡马西林生物合成基因,表明 ERF1 和 WRKY33 形成转录复合物以协同激活卡马西林生物合成基因,从而介导乙烯/JA 和 MPK3/MPK6 信号通路的协同作用以诱导卡马西林的生物合成。此外,作为乙烯和 JA 途径的整合者,ERF1 也是 MPK3/MPK6 的底物,MPK3/MPK6 磷酸化 ERF1 以增加其转录激活活性,从而与乙烯/JA 途径进一步合作诱导卡马西林的生物合成。总之,我们的数据揭示了乙烯、JA 和 MPK3/MPK6 信号通路通过 ERF1 和 WRKY33 转录因子在拟南芥中对卡马西林生物合成的多层次协同调控。

相似文献

6
A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis.
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5638-43. doi: 10.1073/pnas.0711301105. Epub 2008 Mar 31.
8
Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways.
J Integr Plant Biol. 2020 Nov;62(11):1780-1796. doi: 10.1111/jipb.12973. Epub 2020 Jun 26.
9
Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by immunity.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7456-7461. doi: 10.1073/pnas.1702613114. Epub 2017 Jun 26.
10
Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis.
J Biol Chem. 2008 Oct 3;283(40):26996-7006. doi: 10.1074/jbc.M801392200. Epub 2008 Aug 7.

引用本文的文献

1
Molecular Decoding of Phytohormone Crosstalk: JA-Mediated Key Regulatory Nodes and Signal Integration.
Plants (Basel). 2025 Aug 26;14(17):2647. doi: 10.3390/plants14172647.
3
Comparative transcriptomics of atrazine-tolerant and sensitive alfalfa varieties under atrazine stress.
BMC Plant Biol. 2025 Aug 9;25(1):1048. doi: 10.1186/s12870-025-07129-x.
5
Integrative analysis of co-expression networks and codon usage bias in maize under biotic stress.
PLoS One. 2025 Jul 23;20(7):e0317755. doi: 10.1371/journal.pone.0317755. eCollection 2025.
7
Transcription factor ERF1 promotes seed germination by repressing jasmonic acid (JA) signaling pathway.
Plant Cell Rep. 2025 Jun 26;44(7):157. doi: 10.1007/s00299-025-03548-0.
8
Characterization of PAMP-induced peptides and mechanistic insights into SlPIP2-mediated defense in tomato.
Plant Cell Rep. 2025 Jun 20;44(7):149. doi: 10.1007/s00299-025-03540-8.

本文引用的文献

3
Molecular mechanisms of early plant pattern-triggered immune signaling.
Mol Cell. 2021 Sep 2;81(17):3449-3467. doi: 10.1016/j.molcel.2021.07.029. Epub 2021 Aug 16.
4
Salicylic Acid: Biosynthesis and Signaling.
Annu Rev Plant Biol. 2021 Jun 17;72:761-791. doi: 10.1146/annurev-arplant-081320-092855. Epub 2021 Mar 23.
5
PTI-ETI crosstalk: an integrative view of plant immunity.
Curr Opin Plant Biol. 2021 Aug;62:102030. doi: 10.1016/j.pbi.2021.102030. Epub 2021 Mar 5.
6
Multiple levels of crosstalk in hormone networks regulating plant defense.
Plant J. 2021 Jan;105(2):489-504. doi: 10.1111/tpj.15124. Epub 2020 Dec 19.
7
Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways.
J Integr Plant Biol. 2020 Nov;62(11):1780-1796. doi: 10.1111/jipb.12973. Epub 2020 Jun 26.
8
Plant Immunity: Danger Perception and Signaling.
Cell. 2020 May 28;181(5):978-989. doi: 10.1016/j.cell.2020.04.028. Epub 2020 May 21.
10
Ethylene signaling in plants.
J Biol Chem. 2020 May 29;295(22):7710-7725. doi: 10.1074/jbc.REV120.010854. Epub 2020 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验