Suppr超能文献

学习过程中人类大脑网络的动态重新配置。

Dynamic reconfiguration of human brain networks during learning.

机构信息

Complex Systems Group, Department of Physics, University of California, Santa Barbara, CA 93106, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6. doi: 10.1073/pnas.1018985108. Epub 2011 Apr 18.

Abstract

Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.

摘要

人类学习是一种复杂的现象,需要灵活性来适应现有的大脑功能,并精确选择新的神经生理活动来驱动所需的行为。这两个属性——灵活性和选择性——必须在多个时间尺度上运作,因为技能的表现从缓慢和具有挑战性转变为快速和自动。这种选择性适应性自然是由模块化结构提供的,模块化结构在进化、发展和最佳网络功能中起着关键作用。我们使用从初始训练到掌握简单运动技能过程中获得的大脑活动的功能连接测量来研究模块化结构在人类学习中的作用,通过识别跨越多个时间尺度的模块化组织的动态变化来实现这一目标。我们的结果表明,在一个实验会话中,我们通过节点对模块的忠诚度来衡量的灵活性,预测了在未来会话中相对的学习量。我们还开发了一个用于识别动态系统中模块化结构的一般统计框架,该框架广泛适用于网络适应性对系统性能理解至关重要的学科。

相似文献

1
Dynamic reconfiguration of human brain networks during learning.学习过程中人类大脑网络的动态重新配置。
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6. doi: 10.1073/pnas.1018985108. Epub 2011 Apr 18.
4
Cohesive network reconfiguration accompanies extended training.连贯网络重构伴随长期训练。
Hum Brain Mapp. 2017 Sep;38(9):4744-4759. doi: 10.1002/hbm.23699. Epub 2017 Jun 24.
7
Optimal structure of metaplasticity for adaptive learning.适应性学习的元可塑性最佳结构。
PLoS Comput Biol. 2017 Jun 28;13(6):e1005630. doi: 10.1371/journal.pcbi.1005630. eCollection 2017 Jun.

引用本文的文献

7
Homological landscape of human brain functional sub-circuits.人类大脑功能子回路的同源景观
Mathematics (Basel). 2024 Feb;12(3). doi: 10.3390/math12030455. Epub 2024 Jan 31.

本文引用的文献

1
3
Modular and hierarchically modular organization of brain networks.大脑网络的模块化和层次模块化组织。
Front Neurosci. 2010 Dec 8;4:200. doi: 10.3389/fnins.2010.00200. eCollection 2010.
4
Brain graphs: graphical models of the human brain connectome.脑图谱:人类脑连接组的图形模型。
Annu Rev Clin Psychol. 2011;7:113-40. doi: 10.1146/annurev-clinpsy-040510-143934.
5
Conserved and variable architecture of human white matter connectivity.人类白质连接的保守和可变结构。
Neuroimage. 2011 Jan 15;54(2):1262-79. doi: 10.1016/j.neuroimage.2010.09.006. Epub 2010 Sep 17.
6
Robustness and evolvability.稳健性和可进化性。
Trends Genet. 2010 Sep;26(9):406-14. doi: 10.1016/j.tig.2010.06.002. Epub 2010 Jul 1.
7
Performance of modularity maximization in practical contexts.模块化最大化在实际环境中的性能。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046106. doi: 10.1103/PhysRevE.81.046106. Epub 2010 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验