Suppr超能文献

瞬时频率:动态脑因果网络的一种新型功能生物标志物。

Instantaneous Frequency: A New Functional Biomarker for Dynamic Brain Causal Networks.

作者信息

Tang Haoteng, Dai Siyuan, Guo Lei, Gu Pengfei, Liu Guodong, Leow Alex D, Thompson Paul M, Huang Heng, Zhan Liang

机构信息

Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, Texas, USA.

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

AI Neurosci. 2025 Jun 6. doi: 10.1089/ains.2025.0005.

Abstract

BACKGROUND

This study introduces instantaneous frequency (IF) analysis as a novel method for characterizing dynamic brain causal networks from functional magnetic resonance imaging blood-oxygen-level-dependent signals.

METHODS

Effective connectivity, estimated using dynamic causal modeling, is analyzed to derive IF sequences, with the average IF across brain regions serving as a potential biomarker for global network oscillatory behavior.

RESULTS

Analysis of data from the Alzheimer's Disease (AD) Neuroimaging Initiative, Open Access Series of Imaging Studies, and Human Connectome Project demonstrates the method's efficacy in distinguishing between clinical and demographic groups, such as cognitive decline stages (e.g., normal control, early mild cognitive impairment [MCI], late MCI, and AD), sex differences, and sleep quality levels.

CONCLUSION

Statistical analyses reveal significant group differences in IF metrics, highlighting its potential as a sensitive indicator for early diagnosis and monitoring of neurodegenerative and cognitive conditions.

摘要

背景

本研究引入瞬时频率(IF)分析,作为一种从功能磁共振成像血氧水平依赖信号中表征动态脑因果网络的新方法。

方法

使用动态因果模型估计有效连通性,以推导IF序列,将脑区的平均IF作为全局网络振荡行为的潜在生物标志物。

结果

对来自阿尔茨海默病(AD)神经影像倡议、开放获取影像研究系列和人类连接体项目的数据进行分析,证明了该方法在区分临床和人口统计学组方面的有效性,如认知衰退阶段(例如,正常对照、早期轻度认知障碍[MCI]、晚期MCI和AD)、性别差异和睡眠质量水平。

结论

统计分析揭示了IF指标在组间存在显著差异,突出了其作为神经退行性和认知疾病早期诊断及监测的敏感指标的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1be7/12412747/f8a9886d0166/nihms-2087133-f0001.jpg

相似文献

本文引用的文献

2
Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases.用于阿尔茨海默病的自引导知识注入图神经网络
Med Image Comput Comput Assist Interv. 2024 Oct;15002:378-388. doi: 10.1007/978-3-031-72069-7_36. Epub 2024 Oct 4.
4
Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data.多模态神经影像数据上基于对比学习的双向映射
Med Image Comput Comput Assist Interv. 2023 Oct;14222:138-148. doi: 10.1007/978-3-031-43898-1_14. Epub 2023 Oct 1.
6
HIERARCHICAL BRAIN EMBEDDING USING EXPLAINABLE GRAPH LEARNING.使用可解释图学习的分层脑嵌入
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761543. Epub 2022 Apr 26.
8
Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model.基于分层符号图池化模型的对比脑网络学习。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7363-7375. doi: 10.1109/TNNLS.2022.3220220. Epub 2024 Jun 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验