Suppr超能文献

光转导:脊椎动物和无脊椎动物中的不同机制。

Phototransduction: different mechanisms in vertebrates and invertebrates.

作者信息

Rayer B, Naynert M, Stieve H

机构信息

Institut für Biologie II, RWTH Aachen, F.R.G.

出版信息

J Photochem Photobiol B. 1990 Nov;7(2-4):107-48. doi: 10.1016/1011-1344(90)85151-l.

Abstract

The photoreceptor cells of invertebrate animals differ from those of vertebrates in morphology and physiology. Our present knowledge of the different structures and transduction mechanisms of the two animal groups is described. In invertebrates, rhodopsin is converted by light into a meta-rhodopsin which is thermally stable and is usually re-isomerized by light. In contrast, photoisomerization in vertebrates leads to dissociation of the chromophore from opsin, and a metabolic process is necessary to regenerate rhodopsin. The electrical signals of visual excitation have opposite character in vertebrates and invertebrates: the vertebrate photoreceptor cell is hyperpolarized because of a decrease in conductance and invertebrate photoreceptors are depolarized owing to an increase in conductance. Single-photon-evoked excitatory events, which are believed to be a result of concerted action (the opening in invertebrates and the closing in vertebrates) of many light-modulated cation channels, are very different in terms of size and time course of photoreceptors for invertebrates and vertebrates. In invertebrates, the single-photon events (bumps) produced under identical conditions vary greatly in delay (latency), time course and size. The multiphoton response to brighter stimuli is several times as long as a response evoked by a single photon. The single-photon response of vertebrates has a standard size, a standard latency and a standard time course, all three parameters showing relatively small variations. Responses to flashes containing several photons have a shape and time scale that are similar to the single-photon-evoked events, varying only by an amplitude scaling factor, but not in latency and time course. In both vertebrate and invertebrate photoreceptors the single-photon-evoked events become smaller (in size) and faster owing to light adaptation. Calcium is mainly involved in these adaptation phenomena. All light adaptation in vertebrates is primarily, or perhaps exclusively, attributable to calcium feedback. In invertebrates, cyclic AMP (cAMP) is apparently another controller of sensitivity in dark adaptation. The interaction of photoexcited rhodopsin with a G-protein is similar in both vertebrate and invertebrate photoreceptors. However, these G-proteins activate different photoreceptor enzymes (phosphodiesterases): phospholipase C in invertebrates and cGMP phosphodiesterase in vertebrates. In the photoreceptors of vertebrates light leads to a rapid hydrolysis of cGMP which results in closing of cation channels. At present, the identity of the internal terminal messenger in invertebrate photoreceptors is still unsolved.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

无脊椎动物的光感受器细胞在形态和生理方面与脊椎动物的不同。本文描述了我们目前对这两类动物不同结构和转导机制的了解。在无脊椎动物中,视紫红质被光转化为一种热稳定的变视紫红质,通常会被光重新异构化。相比之下,脊椎动物中的光异构化会导致发色团与视蛋白解离,需要一个代谢过程来再生视紫红质。视觉兴奋的电信号在脊椎动物和无脊椎动物中具有相反的特性:脊椎动物的光感受器细胞由于电导降低而超极化,无脊椎动物的光感受器则由于电导增加而 depolarized。单光子诱发的兴奋性事件被认为是许多光调制阳离子通道协同作用(无脊椎动物中打开,脊椎动物中关闭)的结果,在无脊椎动物和脊椎动物的光感受器的大小和时间进程方面有很大不同。在无脊椎动物中,在相同条件下产生的单光子事件(脉冲)在延迟(潜伏期)、时间进程和大小上有很大差异。对更亮刺激的多光子反应比单光子诱发的反应长几倍。脊椎动物的单光子反应具有标准大小、标准潜伏期和标准时间进程,这三个参数的变化相对较小。对包含多个光子的闪光的反应具有与单光子诱发事件相似的形状和时间尺度,只是在幅度上有一个缩放因子的差异,而潜伏期和时间进程不变。在脊椎动物和无脊椎动物的光感受器中,单光子诱发事件由于光适应而变得更小(在大小上)且更快。钙主要参与这些适应现象。脊椎动物中的所有光适应主要或可能完全归因于钙反馈。在无脊椎动物中,环磷酸腺苷(cAMP)显然是暗适应中另一种敏感性控制器。光激发的视紫红质与 G 蛋白的相互作用在脊椎动物和无脊椎动物的光感受器中相似。然而,这些 G 蛋白激活不同的光感受器酶(磷酸二酯酶):无脊椎动物中的磷脂酶 C 和脊椎动物中的 cGMP 磷酸二酯酶。在脊椎动物的光感受器中,光导致 cGMP 的快速水解,从而导致阳离子通道关闭。目前,无脊椎动物光感受器中内部终末信使的身份仍然未解决。(摘要截短至 400 字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验