Nagy K
Institut für Biologie II der Rheinisch-Westfälischen Technischen Hochschule Aachen.
Q Rev Biophys. 1991 May;24(2):165-226. doi: 10.1017/s0033583500003401.
Limulus ventral nerve photoreceptor, a classical preparation for the study the phototransduction in invertebrate eyes, seems to have a very complex mechanism to transform light energy into a physiological signal. Although the main function of the photoreceptor is to change the membrane conductance according to the illumination, the cell has voltage-activated conductances as well. The voltage-gated conductances are matched to the light-activated ones in the sense that they make the function of the cell more efficient. The complex mechanism of phototransduction and the presence of four different voltage-gated conductance in Limulus ventral nerve photoreceptors indicate that these cells are far less differentiated than the photoreceptor cells of vertebrates. Indications accumulated in recent years support the view that the ventral photoreceptor of Limulus has different light-activated macroscopic current components, ion channels and terminal transmitters. After conclusions from macroscopic current measurements (Payne, 1986; Payne et al. 1986 a, b), direct evidence was presented by single-channel (Nagy & Stieve, 1990 a, b; Nagy, 1990 a, b) and macroscopic current measurements (Deckert et al. 1991 a, b) for three different light-activated conductances. It has been shown that two of these conductances are stimulated by two different excitation mechanisms. The two mechanisms, having different kinetics, release probably two different transmitters. One of them might be the cGMP (Johnson et al. 1986), the other one the calcium ion (Payne et al. 1986 a, b). However, the biochemical processes which link the rhodopsin molecules and the ion channels are not known. The unknown chemical details of the phototransduction result in a delay for the mathematical description of the biophysical mechanisms. More biochemical details are known about the adaptation mechanism. It was found that inositol 1,4,5-trisphosphate is a messenger for the release of calcium ions from the intracellular stores and that calcium ions are the messengers for adaptation (Payne et al. 1986 b; Payne & Fein, 1987). Concerning the mechanism of calcium release, it was revealed that a negative feedback acts on the enzyme cascade to regulate the internal calcium level and to protect the stores against complete emptying (Payne et al. 1988, 1990). Calcium ions also play an important role in the excitation mechanism. (a) In [Ca2+]i-depleted cells the light-induced current was increased after intracellular Ca2+ injection, suggesting that calcium is necessary for the transduction mechanism (Bolsover & Brown, 1985).(ABSTRACT TRUNCATED AT 400 WORDS)
鲎腹神经光感受器是研究无脊椎动物眼睛光转导的经典标本,其将光能转化为生理信号的机制似乎非常复杂。尽管光感受器的主要功能是根据光照改变膜电导,但该细胞也具有电压激活电导。电压门控电导与光激活电导相匹配,因为它们使细胞功能更高效。光转导的复杂机制以及鲎腹神经光感受器中存在四种不同的电压门控电导,表明这些细胞的分化程度远低于脊椎动物的光感受器细胞。近年来积累的证据支持这样一种观点,即鲎的腹侧光感受器具有不同的光激活宏观电流成分、离子通道和终末递质。在从宏观电流测量得出结论后(佩恩,1986年;佩恩等人,1986年a、b),单通道(纳吉和施蒂夫,1990年a、b;纳吉,1990年a、b)和宏观电流测量(德克特等人,1991年a、b)提供了三种不同光激活电导的直接证据。已经表明,其中两种电导是由两种不同的激发机制刺激的。这两种机制具有不同的动力学,可能释放两种不同的递质。其中一种可能是环磷酸鸟苷(约翰逊等人,1986年),另一种是钙离子(佩恩等人,1986年a、b)。然而,连接视紫红质分子和离子通道的生化过程尚不清楚。光转导未知的化学细节导致了对生物物理机制进行数学描述的延迟。关于适应机制,人们了解到更多的生化细节。发现肌醇1,4,5 -三磷酸是从细胞内储存中释放钙离子的信使,而钙离子是适应的信使(佩恩等人,1986年b;佩恩和费恩,1987年)。关于钙释放机制,研究表明负反馈作用于酶级联反应,以调节细胞内钙水平并保护储存免受完全排空(佩恩等人,1988年、1990年)。钙离子在激发机制中也起着重要作用。(a)在细胞内钙离子浓度降低的细胞中,细胞内注射钙离子后光诱导电流增加,这表明钙对于转导机制是必需的(博尔索弗和布朗,1985年)。(摘要截断于400字)