1 Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom .
2 Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom .
Brain Connect. 2017 Dec;7(10):661-670. doi: 10.1089/brain.2017.0512.
In the present study, a novel data-driven topological filtering technique is introduced to derive the backbone of functional brain networks relying on orthogonal minimal spanning trees (OMSTs). The method aims to identify the essential functional connections to ensure optimal information flow via the objective criterion of global efficiency minus the cost of surviving connections. The OMST technique was applied to multichannel, resting-state neuromagnetic recordings from four groups of participants: healthy adults (n = 50), adults who have suffered mild traumatic brain injury (n = 30), typically developing children (n = 27), and reading-disabled children (n = 25). Weighted interactions between network nodes (sensors) were computed using an integrated approach of dominant intrinsic coupling modes based on two alternative metrics (symbolic mutual information and phase lag index), resulting in excellent discrimination of individual cases according to their group membership. Classification results using OMST-derived functional networks were clearly superior to results using either relative power spectrum features or functional networks derived through the conventional minimal spanning tree algorithm.
在本研究中,引入了一种新颖的数据驱动拓扑滤波技术,通过正交最小生成树(OMST)来推导出功能脑网络的骨干。该方法旨在通过全局效率减去幸存连接成本的客观标准来识别基本的功能连接,以确保最佳的信息流。OMST 技术应用于来自四组参与者的多通道静息态神经磁记录:健康成年人(n=50)、轻度创伤性脑损伤的成年人(n=30)、正常发育的儿童(n=27)和阅读障碍的儿童(n=25)。使用基于两种替代度量标准(符号互信息和相位滞后指数)的主导内在耦合模式的综合方法来计算网络节点(传感器)之间的加权相互作用,根据其所属组,对个体案例进行了出色的区分。使用 OMST 衍生的功能网络进行分类的结果明显优于使用相对功率谱特征或通过常规最小生成树算法衍生的功能网络进行分类的结果。