Suppr超能文献

NCIPLOT:一个用于绘制非共价相互作用区域的程序。

NCIPLOT: a program for plotting non-covalent interaction regions.

作者信息

Contreras-García Julia, Johnson Erin R, Keinan Shahar, Chaudret Robin, Piquemal Jean-Philip, Beratan David N, Yang Weitao

机构信息

Department of Chemistry, Duke University, Durham, North Carolina, 27708.

出版信息

J Chem Theory Comput. 2011 Mar 8;7(3):625-632. doi: 10.1021/ct100641a.

Abstract

Non-covalent interactions hold the key to understanding many chemical, biological, and technological problems. Describing these non-covalent interactions accurately, including their positions in real space, constitutes a first step in the process of decoupling the complex balance of forces that define non-covalent interactions. Because of the size of macromolecules, the most common approach has been to assign van der Waals interactions (vdW), steric clashes (SC), and hydrogen bonds (HBs) based on pairwise distances between atoms according to their van der Waals radii. We recently developed an alternative perspective, derived from the electronic density: the Non-Covalent Interactions (NCI) index [J. Am. Chem. Soc. 2010, 132, 6498]. This index has the dual advantages of being generally transferable to diverse chemical applications and being very fast to compute, since it can be calculated from promolecular densities. Thus, NCI analysis is applicable to large systems, including proteins and DNA, where analysis of non-covalent interactions is of great potential value. Here, we describe the NCI computational algorithms and their implementation for the analysis and visualization of weak interactions, using both self-consistent fully quantum-mechanical, as well as promolecular, densities. A wide range of options for tuning the range of interactions to be plotted is also presented. To demonstrate the capabilities of our approach, several examples are given from organic, inorganic, solid state, and macromolecular chemistry, including cases where NCI analysis gives insight into unconventional chemical bonding. The NCI code and its manual are available for download at http://www.chem.duke.edu/~yang/software.htm.

摘要

非共价相互作用是理解许多化学、生物学和技术问题的关键。准确描述这些非共价相互作用,包括它们在真实空间中的位置,是解开定义非共价相互作用的复杂力平衡过程的第一步。由于大分子的尺寸,最常见的方法是根据原子间的范德华半径,基于原子间的成对距离来指定范德华相互作用(vdW)、空间位阻冲突(SC)和氢键(HBs)。我们最近从电子密度出发,开发了一种替代观点:非共价相互作用(NCI)指数[《美国化学会志》2010年,132卷,6498页]。该指数具有双重优势,通常可转移到各种化学应用中,并且计算速度非常快,因为它可以从预分子密度计算得出。因此,NCI分析适用于大型系统,包括蛋白质和DNA,其中非共价相互作用的分析具有巨大的潜在价值。在这里,我们描述了NCI计算算法及其用于弱相互作用分析和可视化的实现,使用了自洽的完全量子力学密度以及预分子密度。还介绍了用于调整要绘制的相互作用范围的各种选项。为了展示我们方法的能力,给出了来自有机、无机、固态和大分子化学的几个例子,包括NCI分析能够深入了解非常规化学键的情况。NCI代码及其手册可在http://www.chem.duke.edu/~yang/software.htm上下载。

相似文献

1
NCIPLOT: a program for plotting non-covalent interaction regions.
J Chem Theory Comput. 2011 Mar 8;7(3):625-632. doi: 10.1021/ct100641a.
2
Revealing non-covalent interactions in solids: NCI plots revisited.
Phys Chem Chem Phys. 2012 Sep 21;14(35):12165-72. doi: 10.1039/c2cp41395g. Epub 2012 Jul 31.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Revealing non-covalent interactions in molecular crystals through their experimental electron densities.
Chemistry. 2012 Nov 26;18(48):15523-36. doi: 10.1002/chem.201201290. Epub 2012 Oct 4.
5
Topological Analysis of Electron Density in Graphene/Benzene and Graphene/hBN.
Materials (Basel). 2025 Apr 14;18(8):1790. doi: 10.3390/ma18081790.
6
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
7
Theory and practice of modeling van der Waals interactions in electronic-structure calculations.
Chem Soc Rev. 2019 Jul 29;48(15):4118-4154. doi: 10.1039/c9cs00060g.
9
When does a hydrogen bond become a van der Waals interaction? a topological answer.
J Comput Chem. 2019 Mar 30;40(8):937-943. doi: 10.1002/jcc.25774.
10
Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions.
J Phys Chem A. 2011 Nov 17;115(45):12983-90. doi: 10.1021/jp204278k. Epub 2011 Jul 25.

引用本文的文献

1
Modeling graphene oxide decorated with FeO, SO and NO.
Sci Rep. 2025 Sep 15;15(1):32538. doi: 10.1038/s41598-025-18685-5.
5
An improved mechanistic model for the diastereoselective addition of Grignard reagents to -(-butylsulfinyl)imines.
RSC Adv. 2025 Sep 3;15(38):31664-31673. doi: 10.1039/d4ra06560c. eCollection 2025 Aug 29.
6
Stabilization of Zwitterionic Versus Canonical Glycine by DMSO Molecules.
Pharmaceuticals (Basel). 2025 Aug 6;18(8):1168. doi: 10.3390/ph18081168.
7
Elucidating Fluorine Steering Effects in Diels-Alder Reactions Interfaced with Charge-Enhanced Reactivity.
European J Org Chem. 2025 Feb 3;28(5). doi: 10.1002/ejoc.202401203. Epub 2025 Jan 2.
9
London Dispersion as a Design Element in Molecular Catalysis.
J Am Chem Soc. 2025 Aug 20;147(33):29611-29623. doi: 10.1021/jacs.5c09212. Epub 2025 Aug 11.
10
Inversion of the X-ray restrained wavefunction equations: a first step towards the development of exchange-correlation functionals based on X-ray data.
J Appl Crystallogr. 2025 Jul 25;58(Pt 4):1106-1121. doi: 10.1107/S1600576725004765. eCollection 2025 Aug 1.

本文引用的文献

1
Revealing noncovalent interactions.
J Am Chem Soc. 2010 May 12;132(18):6498-506. doi: 10.1021/ja100936w.
2
Protein folding in membranes.
Cell Mol Life Sci. 2010 Jun;67(11):1779-98. doi: 10.1007/s00018-010-0259-0. Epub 2010 Jan 27.
3
Photochemical study on the reactivity of tetrasulfur tetranitride, S4N4.
Inorg Chem. 2009 May 4;48(9):4075-82. doi: 10.1021/ic802145x.
4
Host-guest complexes with protein-ligand-like affinities: computational analysis and design.
J Am Chem Soc. 2009 Mar 25;131(11):4012-21. doi: 10.1021/ja808175m.
5
A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20737-42. doi: 10.1073/pnas.0706407105. Epub 2007 Dec 19.
6
Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex.
EMBO Rep. 2007 Sep;8(9):879-84. doi: 10.1038/sj.embor.7401047. Epub 2007 Aug 10.
7
Strong and weak hydrogen bonds in the protein-ligand interface.
Proteins. 2007 Apr 1;67(1):128-141. doi: 10.1002/prot.21253.
8
The cucurbit[n]uril family: prime components for self-sorting systems.
J Am Chem Soc. 2005 Nov 16;127(45):15959-67. doi: 10.1021/ja055013x.
9
Interfaces and the driving force of hydrophobic assembly.
Nature. 2005 Sep 29;437(7059):640-7. doi: 10.1038/nature04162.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验