Contreras-García Julia, Johnson Erin R, Keinan Shahar, Chaudret Robin, Piquemal Jean-Philip, Beratan David N, Yang Weitao
Department of Chemistry, Duke University, Durham, North Carolina, 27708.
J Chem Theory Comput. 2011 Mar 8;7(3):625-632. doi: 10.1021/ct100641a.
Non-covalent interactions hold the key to understanding many chemical, biological, and technological problems. Describing these non-covalent interactions accurately, including their positions in real space, constitutes a first step in the process of decoupling the complex balance of forces that define non-covalent interactions. Because of the size of macromolecules, the most common approach has been to assign van der Waals interactions (vdW), steric clashes (SC), and hydrogen bonds (HBs) based on pairwise distances between atoms according to their van der Waals radii. We recently developed an alternative perspective, derived from the electronic density: the Non-Covalent Interactions (NCI) index [J. Am. Chem. Soc. 2010, 132, 6498]. This index has the dual advantages of being generally transferable to diverse chemical applications and being very fast to compute, since it can be calculated from promolecular densities. Thus, NCI analysis is applicable to large systems, including proteins and DNA, where analysis of non-covalent interactions is of great potential value. Here, we describe the NCI computational algorithms and their implementation for the analysis and visualization of weak interactions, using both self-consistent fully quantum-mechanical, as well as promolecular, densities. A wide range of options for tuning the range of interactions to be plotted is also presented. To demonstrate the capabilities of our approach, several examples are given from organic, inorganic, solid state, and macromolecular chemistry, including cases where NCI analysis gives insight into unconventional chemical bonding. The NCI code and its manual are available for download at http://www.chem.duke.edu/~yang/software.htm.
非共价相互作用是理解许多化学、生物学和技术问题的关键。准确描述这些非共价相互作用,包括它们在真实空间中的位置,是解开定义非共价相互作用的复杂力平衡过程的第一步。由于大分子的尺寸,最常见的方法是根据原子间的范德华半径,基于原子间的成对距离来指定范德华相互作用(vdW)、空间位阻冲突(SC)和氢键(HBs)。我们最近从电子密度出发,开发了一种替代观点:非共价相互作用(NCI)指数[《美国化学会志》2010年,132卷,6498页]。该指数具有双重优势,通常可转移到各种化学应用中,并且计算速度非常快,因为它可以从预分子密度计算得出。因此,NCI分析适用于大型系统,包括蛋白质和DNA,其中非共价相互作用的分析具有巨大的潜在价值。在这里,我们描述了NCI计算算法及其用于弱相互作用分析和可视化的实现,使用了自洽的完全量子力学密度以及预分子密度。还介绍了用于调整要绘制的相互作用范围的各种选项。为了展示我们方法的能力,给出了来自有机、无机、固态和大分子化学的几个例子,包括NCI分析能够深入了解非常规化学键的情况。NCI代码及其手册可在http://www.chem.duke.edu/~yang/software.htm上下载。