Stöhr Martin, Van Voorhis Troy, Tkatchenko Alexandre
Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg.
Chem Soc Rev. 2019 Jul 29;48(15):4118-4154. doi: 10.1039/c9cs00060g.
The accurate description of long-range electron correlation, most prominently including van der Waals (vdW) dispersion interactions, represents a particularly challenging task in the modeling of molecules and materials. vdW forces arise from the interaction of quantum-mechanical fluctuations in the electronic charge density. Within (semi-)local density functional approximations or Hartree-Fock theory such interactions are neglected altogether. Non-covalent vdW interactions, however, are ubiquitous in nature and play a key role for the understanding and accurate description of the stability, dynamics, structure, and response properties in a plethora of systems. During the last decade, many promising methods have been developed for modeling vdW interactions in electronic-structure calculations. These methods include vdW-inclusive Density Functional Theory and correlated post-Hartree-Fock approaches. Here, we focus on the methods within the framework of Density Functional Theory, including non-local van der Waals density functionals, interatomic dispersion models within many-body and pairwise formulation, and random phase approximation-based approaches. This review aims to guide the reader through the theoretical foundations of these methods in a tutorial-style manner and, in particular, highlight practical aspects such as the applicability and the advantages and shortcomings of current vdW-inclusive approaches. In addition, we give an overview of complementary experimental approaches, and discuss tools for the qualitative understanding of non-covalent interactions as well as energy decomposition techniques. Besides representing a reference for the current state-of-the-art, this work is thus also designed as a concise and detailed introduction to vdW-inclusive electronic structure calculations for a general and broad audience.
对长程电子关联(最显著的是包括范德华(vdW)色散相互作用)进行准确描述,在分子和材料建模中是一项特别具有挑战性的任务。范德华力源于电子电荷密度的量子力学涨落之间的相互作用。在(半)局域密度泛函近似或哈特里 - 福克理论中,此类相互作用被完全忽略。然而,非共价范德华相互作用在自然界中普遍存在,对于理解和准确描述众多体系的稳定性、动力学、结构及响应特性起着关键作用。在过去十年中,已经开发出许多用于在电子结构计算中对范德华相互作用进行建模的有前景的方法。这些方法包括包含范德华作用的密度泛函理论以及相关的后哈特里 - 福克方法。在此,我们专注于密度泛函理论框架内的方法,包括非局域范德华密度泛函、多体和成对形式的原子间色散模型以及基于随机相位近似的方法。本综述旨在以教程的方式引导读者了解这些方法的理论基础,尤其突出实际方面,如当前包含范德华作用的方法的适用性、优点和缺点。此外,我们概述了互补的实验方法,并讨论了用于定性理解非共价相互作用的工具以及能量分解技术。除了作为当前技术水平的参考外,这项工作还旨在为广大读者提供对包含范德华作用的电子结构计算的简洁而详细的介绍。