Suppr超能文献

稀疏生物时间序列数据的统计推断方法

Statistical inference methods for sparse biological time series data.

作者信息

Ndukum Juliet, Fonseca Luís L, Santos Helena, Voit Eberhard O, Datta Susmita

机构信息

Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA.

出版信息

BMC Syst Biol. 2011 Apr 25;5:57. doi: 10.1186/1752-0509-5-57.

Abstract

BACKGROUND

Comparing metabolic profiles under different biological perturbations has become a powerful approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but more information is gained if they are measured longitudinally over time. The results are short time series consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then used an ANOVA likelihood ratio method in order to test for significant differences between the profiles.

RESULTS

The proposed methods are capable of distinguishing metabolic time trends resulting from different treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles for cells that had been--or had not been--preconditioned by heat during growth. Furthermore, pair-wise t-tests reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values <0.0001).

CONCLUSION

We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse metabolic and physiological time profiles. The model permits sound statistical inference procedures, based on ANOVA likelihood ratio tests, for testing the significance of differences between short time course data under different biological perturbations.

摘要

背景

比较不同生物扰动下的代谢谱已成为研究细胞功能的有力方法。这些谱可以看作是系统的单个快照,但如果随时间纵向测量,则可以获得更多信息。结果是由相对稀疏的数据组成的短时间序列,无法使用标准时间序列技术(如自相关和频域方法)进行有效分析。在这项工作中,我们研究了酿酒酵母在不同温度和预处理方案下葡萄糖消耗的纵向时间序列谱,这些谱是我们用体内核磁共振(NMR)光谱法获得的。为了进行统计分析,我们首先将几个非线性混合效应回归模型拟合到纵向谱上,然后使用方差分析似然比方法来检验这些谱之间的显著差异。

结果

所提出的方法能够区分不同处理产生的代谢时间趋势,并为这些差异赋予显著性水平。在测试的几个非线性混合效应回归模型中,一个三参数逻辑函数对数据的表示精度最高。方差分析和似然比检验表明,在生长过程中经过或未经过热预处理的细胞的葡萄糖消耗率谱之间存在显著差异。此外,成对t检验揭示了最佳条件与热应激、最佳与恢复条件以及热应激与恢复条件下葡萄糖消耗率纵向谱的显著差异(p值<0.0001)。

结论

我们开发了一种非线性混合效应模型,适用于分析稀疏的代谢和生理时间谱。该模型允许基于方差分析似然比检验进行合理的统计推断程序,以检验不同生物扰动下短时间过程数据之间差异的显著性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验