Suppr超能文献

构建用于协作研究的生物医学网络基础设施。

Building a biomedical cyberinfrastructure for collaborative research.

机构信息

RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.

出版信息

Am J Prev Med. 2011 May;40(5 Suppl 2):S144-50. doi: 10.1016/j.amepre.2011.01.018.

Abstract

For the potential power of genome-wide association studies (GWAS) and translational medicine to be realized, the biomedical research community must adopt standard measures, vocabularies, and systems to establish an extensible biomedical cyberinfrastructure. Incorporating standard measures will greatly facilitate combining and comparing studies via meta-analysis. Incorporating consensus-based and well-established measures into various studies should reduce the variability across studies due to attributes of measurement, making findings across studies more comparable. This article describes two well-established consensus-based approaches to identifying standard measures and systems: PhenX (consensus measures for phenotypes and eXposures), and the Open Geospatial Consortium (OGC). NIH support for these efforts has produced the PhenX Toolkit, an assembled catalog of standard measures for use in GWAS and other large-scale genomic research efforts, and the RTI Spatial Impact Factor Database (SIFD), a comprehensive repository of geo-referenced variables and extensive meta-data that conforms to OGC standards. The need for coordinated development of cyberinfrastructure to support measures and systems that enhance collaboration and data interoperability is clear; this paper includes a discussion of standard protocols for ensuring data compatibility and interoperability. Adopting a cyberinfrastructure that includes standard measures and vocabularies, and open-source systems architecture, such as the two well-established systems discussed here, will enhance the potential of future biomedical and translational research. Establishing and maintaining the cyberinfrastructure will require a fundamental change in the way researchers think about study design, collaboration, and data storage and analysis.

摘要

为了实现全基因组关联研究(GWAS)和转化医学的潜在力量,生物医学研究界必须采用标准措施、词汇和系统,以建立可扩展的生物医学网络基础设施。采用标准措施将极大地促进通过荟萃分析来组合和比较研究。在各种研究中纳入基于共识和成熟的措施,应减少由于测量属性导致的研究之间的变异性,使研究结果更具可比性。本文介绍了两种成熟的基于共识的方法,用于确定标准措施和系统:PhenX(表型和暴露的共识措施)和开放地理空间联盟(OGC)。NIH 对这些工作的支持产生了 PhenX 工具包,这是一个用于 GWAS 和其他大规模基因组研究的标准措施汇编目录,以及 RTI 空间影响因素数据库(SIFD),这是一个符合 OGC 标准的地理参考变量和广泛元数据的综合存储库。显然,需要协调开发网络基础设施,以支持增强协作和数据互操作性的措施和系统;本文包括讨论确保数据兼容性和互操作性的标准协议。采用包括标准措施和词汇的网络基础设施,以及开源系统架构,如这里讨论的两个成熟系统,将增强未来生物医学和转化研究的潜力。建立和维护网络基础设施将需要研究人员在研究设计、协作以及数据存储和分析方面的思维方式发生根本性变化。

相似文献

3
Cyberinfrastructure and the biomedical sciences.网络基础设施与生物医学科学
Am J Prev Med. 2011 May;40(5 Suppl 2):S97-102. doi: 10.1016/j.amepre.2011.01.006.
5
Research standardization tools: pregnancy measures in the PhenX Toolkit.研究标准化工具:PhenX工具包中的妊娠测量指标
Am J Obstet Gynecol. 2017 Sep;217(3):249-262. doi: 10.1016/j.ajog.2017.05.058. Epub 2017 May 31.
7
The PhenX Toolkit: get the most from your measures. PhenX 工具包:充分利用您的测量结果。
Am J Epidemiol. 2011 Aug 1;174(3):253-60. doi: 10.1093/aje/kwr193. Epub 2011 Jul 11.
8
Using the PhenX Toolkit to Add Standard Measures to a Study.使用PhenX工具包为研究添加标准测量方法。
Curr Protoc Hum Genet. 2015 Jul 1;86:1.21.1-1.21.17. doi: 10.1002/0471142905.hg0121s86.
9
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Leveraging the national cyberinfrastructure for biomedical research.利用国家网络基础设施进行生物医学研究。
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):195-9. doi: 10.1136/amiajnl-2013-002059. Epub 2013 Aug 20.

本文引用的文献

1
The PhenX Toolkit: get the most from your measures. PhenX 工具包:充分利用您的测量结果。
Am J Epidemiol. 2011 Aug 1;174(3):253-60. doi: 10.1093/aje/kwr193. Epub 2011 Jul 11.
2
SOAs for Scientific Applications: Experiences and Challenges.科学应用的面向服务架构:经验与挑战。
Future Gener Comput Syst. 2009 Apr 1;25(4):466-473. doi: 10.1016/j.future.2008.09.001.
3
PhenX: a toolkit for interdisciplinary genetics research.PhenX:一个跨学科遗传学研究的工具包。
Curr Opin Lipidol. 2010 Apr;21(2):136-40. doi: 10.1097/MOL.0b013e3283377395.
5
The caBIG terminology review process.癌症生物信息学网格(caBIG)术语审查流程
J Biomed Inform. 2009 Jun;42(3):571-80. doi: 10.1016/j.jbi.2008.12.003. Epub 2008 Dec 25.
8
Populomics.群体组学
Stud Health Technol Inform. 2008;137:265-8.
10
Breakthrough of the year. Human genetic variation.年度突破。人类基因变异。
Science. 2007 Dec 21;318(5858):1842-3. doi: 10.1126/science.318.5858.1842.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验