Suppr超能文献

硫辛酸的再利用改变了大肠杆菌中两条重要代谢途径的电子流。

Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.

机构信息

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 May 10;108(19):7991-6. doi: 10.1073/pnas.1105429108. Epub 2011 Apr 26.

Abstract

In bacteria, cysteines of cytoplasmic proteins, including the essential enzyme ribonucleotide reductase (RNR), are maintained in the reduced state by the thioredoxin and glutathione/glutaredoxin pathways. An Escherichia coli mutant lacking both glutathione reductase and thioredoxin reductase cannot grow because RNR is disulfide bonded and nonfunctional. Here we report that suppressor mutations in the lpdA gene, which encodes the oxidative enzyme lipoamide dehydrogenase required for tricarboxylic acid (TCA) cycle functioning, restore growth to this redox-defective mutant. The suppressor mutations reduce LpdA activity, causing the accumulation of dihydrolipoamide, the reduced protein-bound form of lipoic acid. Dihydrolipoamide can then provide electrons for the reactivation of RNR through reduction of glutaredoxins. Dihydrolipoamide is oxidized in the process, restoring function to the TCA cycle. Thus, two electron transfer pathways are rewired to meet both oxidative and reductive needs of the cell: dihydrolipoamide functionally replaces glutathione, and the glutaredoxins replace LpdA. Both lipoic acid and glutaredoxins act in the reverse manner from their normal cellular functions. Bioinformatic analysis suggests that such activities may also function in other bacteria.

摘要

在细菌中,细胞质蛋白中的半胱氨酸,包括必需的酶核糖核苷酸还原酶(RNR),通过硫氧还蛋白和谷胱甘肽/谷氧还蛋白途径保持还原状态。一种缺乏谷胱甘肽还原酶和硫氧还蛋白还原酶的大肠杆菌突变体由于 RNR 形成二硫键而无法生长且无功能。在这里,我们报告说,编码三羧酸(TCA)循环功能所需的氧化酶二氢硫辛酸脱氢酶的 lpdA 基因中的抑制突变恢复了这种氧化还原缺陷突变体的生长。抑制突变降低了 LpdA 的活性,导致二氢硫辛酸的积累,即硫辛酸的还原蛋白结合形式。然后,二氢硫辛酸可以通过还原谷氧还蛋白为 RNR 的再激活提供电子。在此过程中二氢硫辛酸被氧化,从而恢复 TCA 循环的功能。因此,两条电子转移途径被重新布线以满足细胞的氧化和还原需求:二氢硫辛酸在功能上替代谷胱甘肽,而谷氧还蛋白替代 LpdA。硫辛酸和谷氧还蛋白的作用方式都与它们在正常细胞中的功能相反。生物信息学分析表明,这种活性也可能在其他细菌中发挥作用。

相似文献

引用本文的文献

2
NADPH-dependent and -independent disulfide reductase systems.NADPH 依赖型和非依赖型二硫键还原酶系统。
Free Radic Biol Med. 2018 Nov 1;127:248-261. doi: 10.1016/j.freeradbiomed.2018.03.051. Epub 2018 Mar 30.
3
A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation.一种用于细胞蛋白质 S-亚硝基化的多重酶促机制。
Mol Cell. 2018 Feb 1;69(3):451-464.e6. doi: 10.1016/j.molcel.2017.12.025. Epub 2018 Jan 18.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验