INRIA AMIB Bioinformatique, Laboratoire d'Informatique (LIX), Ecole Polytechnique, 91128 Palaiseau, France.
RNA. 2011 Jun;17(6):1066-75. doi: 10.1261/rna.2543711. Epub 2011 Apr 26.
RNA molecules play integral roles in gene regulation, and understanding their structures gives us important insights into their biological functions. Despite recent developments in template-based and parameterized energy functions, the structure of RNA--in particular the nonhelical regions--is still difficult to predict. Knowledge-based potentials have proven efficient in protein structure prediction. In this work, we describe two differentiable knowledge-based potentials derived from a curated data set of RNA structures, with all-atom or coarse-grained representation, respectively. We focus on one aspect of the prediction problem: the identification of native-like RNA conformations from a set of near-native models. Using a variety of near-native RNA models generated from three independent methods, we show that our potential is able to distinguish the native structure and identify native-like conformations, even at the coarse-grained level. The all-atom version of our knowledge-based potential performs better and appears to be more effective at discriminating near-native RNA conformations than one of the most highly regarded parameterized potential. The fully differentiable form of our potentials will additionally likely be useful for structure refinement and/or molecular dynamics simulations.
RNA 分子在基因调控中发挥着重要作用,了解它们的结构可以让我们深入了解它们的生物学功能。尽管基于模板和参数化的能量函数有了最新的发展,但 RNA 的结构——尤其是无规卷曲区域——仍然难以预测。基于知识的势函数在蛋白质结构预测中已被证明是有效的。在这项工作中,我们描述了两个分别基于 RNA 结构的精心制作的数据集的可微知识势函数,分别采用全原子或粗粒化表示。我们关注预测问题的一个方面:从一组近天然模型中识别天然样 RNA 构象。使用三种独立方法生成的各种近天然 RNA 模型,我们表明我们的势函数能够区分天然结构并识别天然样构象,即使在粗粒化水平也是如此。我们的基于知识的势函数的全原子版本表现更好,并且似乎比最受关注的参数化势函数之一更有效地区分近天然 RNA 构象。我们的势函数的完全可微形式可能还将有助于结构细化和/或分子动力学模拟。