Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
Comput Methods Programs Biomed. 2011 Dec;104(3):e133-47. doi: 10.1016/j.cmpb.2011.03.004. Epub 2011 May 6.
Nuclear magnetic resonance (NMR) spectroscopy has emerged as a technology that can provide metabolite information within organ systems in vivo. In this study, we introduced a new method of employing a clustering algorithm to develop a diagnostic model that can differentially diagnose a single unknown subject in a disease with well-defined group boundaries. We used three tests to assess the suitability and the accuracy required for diagnostic purposes of the four clustering algorithms we investigated (K-means, Fuzzy, Hierarchical, and Medoid Partitioning). To accomplish this goal, we studied the striatal metabolomic profile of R6/2 Huntington disease (HD) transgenic mice and that of wild type (WT) mice using high field in vivo proton NMR spectroscopy (9.4T). We tested all four clustering algorithms (1) with the original R6/2 HD mice and WT mice, (2) with unknown mice, whose status had been determined via genotyping, and (3) with the ability to separate the original R6/2 mice into the two age subgroups (8 and 12 weeks old). Only our diagnostic models that employed ROC-supervised Fuzzy, unsupervised Fuzzy, and ROC-supervised K-means Clustering passed all three stringent tests with 100% accuracy, indicating that they may be used for diagnostic purposes.
磁共振波谱(NMR)技术已成为一种能够提供活体器官系统内代谢物信息的技术。在这项研究中,我们引入了一种新的方法,即采用聚类算法来开发一种诊断模型,该模型可以区分具有明确组边界的疾病中单个未知个体。我们使用三种测试来评估我们研究的四种聚类算法(K-均值、模糊、层次和中位数分区)在诊断目的下的适用性和准确性。为了实现这一目标,我们使用高场体内质子 NMR 光谱(9.4T)研究了 R6/2 亨廷顿病(HD)转基因小鼠和野生型(WT)小鼠的纹状体代谢组学特征。我们测试了所有四种聚类算法:(1)使用原始的 R6/2 HD 小鼠和 WT 小鼠,(2)使用通过基因分型确定状态的未知小鼠,(3)使用将原始 R6/2 小鼠分为两个年龄亚组(8 周和 12 周)的能力。只有我们的诊断模型,采用 ROC 监督模糊、无监督模糊和 ROC 监督 K-均值聚类,以 100%的准确率通过了所有三项严格的测试,这表明它们可能用于诊断目的。