Laboratory of Molecular Modeling & Drug Design; Lindsley F, Kimball Research Institute of the New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
Retrovirology. 2011 May 3;8:28. doi: 10.1186/1742-4690-8-28.
The C-terminal domain (CTD) of HIV-1 capsid (CA), like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs.
Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC), sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease.
These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind CA-CTD.
HIV-1 衣壳 (CA) 的 C 端结构域 (CTD) 与全长 CA 一样,在溶液中形成二聚体,CTD 二聚化是 Gag 组装和成熟的主要驱动力。CTD 二聚界面残基的突变会损害病毒的组装并使其失去感染力。因此,CTD 是设计抗 HIV-1 药物的潜在靶点。
由于二聚界面的关键作用,我们推测二聚界面的α-螺旋区的肽可能是有效的诱饵,以阻止 CTD 二聚体的形成。然而,这些小肽在溶液中没有任何结构,也不能穿透细胞。因此,我们使用碳氢化合物订书钉技术来稳定α-螺旋结构,并通过共聚焦显微镜证实这种修饰也使这些肽具有细胞穿透性。我们还通过使用等温滴定量热法(ITC)、沉降平衡和 NMR 证实,这些肽确实可以破坏二聚体的形成。在体外组装实验中,这些肽抑制成熟样病毒颗粒的形成,并在基于细胞的实验中特异性抑制 HIV-1 的产生。这些肽对包括对逆转录酶和蛋白酶抑制剂耐药的病毒株在内的大量实验室适应株和原发性分离株也表现出强大的抗病毒活性。
这些初步数据为设计针对 CTD 二聚界面的小而稳定的α-螺旋肽和小分子抑制剂奠定了基础。观察到相对较弱的 CA 结合物,如 NYAD-201 和 NYAD-202,表现出特异性并能够破坏 CTD 二聚体,这为进一步探索针对 CA 的更广泛类别的抗病毒化合物提供了希望。我们不能排除这里描述的基于 CA 的肽除了能够结合 CTD 之外,还可能对病毒复制产生其他直接相关的影响。