Safner Toni, Miller Mark P, McRae Brad H, Fortin Marie-Josée, Manel Stéphanie
Laboratory of Alpine Ecology, Equipe Population Genomics and Biodiversity, UMR CNRS 5553, BP 53, University Joseph Fourier, 38041 Grenoble Cedex 9, France; E-Mail:
Int J Mol Sci. 2011 Jan 25;12(2):865-89. doi: 10.3390/ijms12020865.
Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance.
最近,利用自然种群的遗传数据来识别个体集群或集群之间边界的技术迅速发展。因此,有必要对这些不同的技术进行评估。我们使用空间明确的模拟模型来比较三种空间贝叶斯聚类程序和两种边缘检测方法。模拟了空间结构种群,其中连续种群被屏障分隔。我们评估了每种方法在以下因素变化时正确识别边界位置的能力:(i)分化后的时间,(ii)距离隔离强度,(iii)遗传多样性水平,以及(iv)跨屏障的基因流数量。为了进一步评估这些方法在自然种群中检测遗传集群的有效性,我们使用了先前发表的关于北美美洲狮和一种欧洲灌木的数据。我们的结果表明,对于模拟数据和实证数据,贝叶斯空间聚类算法优于直接边缘检测方法。在存在强烈的距离隔离模式时,所有方法都错误地检测到了边界。基于这一发现,我们支持在实证数据集中应用贝叶斯空间聚类算法进行边界检测,并对距离隔离的影响进行必要的测试。