Montpellier Universities 1 and 2, CRBM, Montpellier, France.
J Bone Miner Res. 2011 May;26(5):1099-110. doi: 10.1002/jbmr.282.
Osteoporosis, which results from excessive bone resorption by osteoclasts, is the major cause of morbidity for elder people. Identification of clinically relevant regulators is needed to develop novel therapeutic strategies. Rho GTPases have essential functions in osteoclasts by regulating actin dynamics. This is of particular importance because actin cytoskeleton is essential to generate the sealing zone, an osteoclast-specific structure ultimately mediating bone resorption. Here we report that the atypical Rac1 exchange factor Dock5 is necessary for osteoclast function both in vitro and in vivo. We discovered that establishment of the sealing zone and consequently osteoclast resorbing activity in vitro require Dock5. Mechanistically, our results suggest that osteoclasts lacking Dock5 have impaired adhesion that can be explained by perturbed Rac1 and p130Cas activities. Consistent with these functional assays, we identified a novel small-molecule inhibitor of Dock5 capable of hindering osteoclast resorbing activity. To investigate the in vivo relevance of these findings, we studied Dock5(-/-) mice and found that they have increased trabecular bone mass with normal osteoclast numbers, confirming that Dock5 is essential for bone resorption but not for osteoclast differentiation. Taken together, our findings characterize Dock5 as a regulator of osteoclast function and as a potential novel target to develop antiosteoporotic treatments.
骨质疏松症是由破骨细胞过度吸收骨引起的,是老年人发病的主要原因。需要鉴定临床上相关的调节因子,以开发新的治疗策略。Rho GTPases 通过调节肌动蛋白动力学在破骨细胞中发挥重要作用。这一点尤为重要,因为肌动蛋白细胞骨架对于形成封闭区(一种破骨细胞特有的结构,最终介导骨吸收)是必不可少的。在这里,我们报告了非典型 Rac1 交换因子 Dock5 在体外和体内对破骨细胞功能都是必需的。我们发现,封闭区的建立以及体外破骨细胞的吸收活性都需要 Dock5。从机制上讲,我们的结果表明,缺乏 Dock5 的破骨细胞黏附能力受损,这可以通过 Rac1 和 p130Cas 活性的改变来解释。与这些功能测定一致,我们鉴定了一种新的 Dock5 小分子抑制剂,能够抑制破骨细胞的吸收活性。为了研究这些发现的体内相关性,我们研究了 Dock5(-/-) 小鼠,发现它们的骨小梁骨量增加,而破骨细胞数量正常,这证实了 Dock5 对于骨吸收是必需的,但对于破骨细胞分化则不是必需的。总之,我们的研究结果将 Dock5 确定为破骨细胞功能的调节因子,以及开发抗骨质疏松治疗的潜在新靶点。