Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, CNRS-Institut Jean Barriol-Nancy-Université, 405 rue de Vandœuvre, 54600 Villers-lès-Nancy, France.
Langmuir. 2011 Jun 7;27(11):7140-7. doi: 10.1021/la200069z. Epub 2011 May 4.
The modification of platinum nanofibers by silica using the electrochemically-assisted deposition is reported here. Pt nanofibers are obtained by electrospinning and deposited on a glass substrate. The electrochemically-assisted deposition of the sol-gel material then gives the unique possibility to finely tune the silica film thickness around these nanofibers. It also allows the successful encapsulation of a biomolecule (glucose oxidase was chosen here as a model) while retaining its biological activity, as pointed out via the electrochemical monitoring of H(2)O(2) produced upon addition of glucose in the medium. This silica-glucose oxidase composite offers the possibility of comparing systematically the influence of the deposition time on the bioelectrode response and to compare it with the particular features of the deposits. It was found that the film first grew uniformly around the nanofibers and then started to deposit between them, covering the whole sample (fibers and glass substrate), and tended to fully embed the nanofibers for prolonged deposition. The thickness of the silica film is critical for the electroactivity of the biocomposite, the best response being obtained for a silica layer thickness in the range of the fiber diameter (∼50 nm).
本文报道了使用电化学辅助沉积法对铂纳米纤维进行二氧化硅修饰的方法。Pt 纳米纤维通过静电纺丝获得,并沉积在玻璃基底上。然后,溶胶-凝胶材料的电化学辅助沉积为精细调整这些纳米纤维周围的二氧化硅薄膜厚度提供了独特的可能性。它还允许成功封装生物分子(这里选择葡萄糖氧化酶作为模型),同时保持其生物活性,如通过在介质中添加葡萄糖时监测产生的 H(2)O(2)的电化学来指出。这种二氧化硅-葡萄糖氧化酶复合材料提供了系统比较沉积时间对生物电极响应的影响的可能性,并将其与沉积物的特殊特征进行比较。结果发现,该薄膜首先在纳米纤维周围均匀生长,然后开始在它们之间沉积,覆盖整个样品(纤维和玻璃基底),并倾向于在长时间沉积时完全嵌入纳米纤维。二氧化硅薄膜的厚度对生物复合材料的电活性至关重要,对于纤维直径范围内的二氧化硅层厚度(约 50nm),可获得最佳响应。