Suppr超能文献

滑膜来源干细胞的生长因子预培养用于软骨组织工程。

Growth factor priming of synovium-derived stem cells for cartilage tissue engineering.

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.

出版信息

Tissue Eng Part A. 2011 Sep;17(17-18):2259-65. doi: 10.1089/ten.TEA.2011.0155. Epub 2011 Jun 24.

Abstract

This study investigated the potential use of synovium-derived stem cells (SDSCs) as a cell source for cartilage tissue engineering. Harvested SDSCs from juvenile bovine synovium were expanded in culture in the presence (primed) or absence (unprimed) of growth factors (1 ng/mL transforming growth factor-β(1), 10 ng/mL platelet-derived growth factor-ββ, and 5 ng/mL basic fibroblast growth factor-2) and subsequently seeded into clinically relevant agarose hydrogel scaffolds. Constructs seeded with growth factor-primed SDSCs that received an additional transient application of transforming growth factor-β(3) for the first 21 days (release) exhibited significantly better mechanical and biochemical properties compared to constructs that received sustained growth factor stimulation over the entire culture period (continuous). In particular, the release group exhibited a Young's modulus (267±96 kPa) approaching native immature bovine cartilage levels, with corresponding glycosaminoglycan content (5.19±1.45%ww) similar to native values, within 7 weeks of culture. These findings suggest that SDSCs may serve as a cell source for cartilage tissue engineering applications.

摘要

本研究探讨了滑膜来源干细胞(SDSC)作为软骨组织工程细胞来源的潜力。从幼年牛滑膜中采集的 SDSC 在存在(预培养)或不存在(未预培养)生长因子(1ng/mL 转化生长因子-β(1)、10ng/mL 血小板衍生生长因子-ββ和 5ng/mL 碱性成纤维细胞生长因子-2)的情况下在培养中扩增,随后接种到临床相关的琼脂糖水凝胶支架中。与在整个培养期间持续接受生长因子刺激的构建体(连续)相比,接受前 21 天(释放)转化生长因子-β(3)瞬时施加的预培养生长因子 SDSC 接种的构建体表现出更好的机械和生化性能。特别是,释放组在 7 周的培养时间内表现出接近天然未成熟牛软骨水平的杨氏模量(267±96kPa),相应的糖胺聚糖含量(5.19±1.45%ww)与天然值相似。这些发现表明,SDSC 可能作为软骨组织工程应用的细胞来源。

相似文献

1
Growth factor priming of synovium-derived stem cells for cartilage tissue engineering.
Tissue Eng Part A. 2011 Sep;17(17-18):2259-65. doi: 10.1089/ten.TEA.2011.0155. Epub 2011 Jun 24.
3
Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells.
Tissue Eng Part A. 2013 May;19(9-10):1144-54. doi: 10.1089/ten.TEA.2012.0351. Epub 2013 Jan 15.
4
Engineering of functional cartilage tissue using stem cells from synovial lining: a preliminary study.
Clin Orthop Relat Res. 2008 Aug;466(8):1880-9. doi: 10.1007/s11999-008-0316-2. Epub 2008 May 30.
6
Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels.
Osteoarthritis Cartilage. 2008 Sep;16(9):1074-82. doi: 10.1016/j.joca.2008.02.005. Epub 2008 Mar 18.
7
A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources.
Tissue Eng Part A. 2012 Jun;18(11-12):1161-70. doi: 10.1089/ten.TEA.2011.0544. Epub 2012 Apr 27.
8
Synovium-derived stem cell-based chondrogenesis.
Differentiation. 2008 Dec;76(10):1044-56. doi: 10.1111/j.1432-0436.2008.00299.x. Epub 2008 Jul 2.

引用本文的文献

2
Toward defining the role of the synovium in mitigating normal articular cartilage wear and tear.
J Biomech. 2023 Feb;148:111472. doi: 10.1016/j.jbiomech.2023.111472. Epub 2023 Jan 26.
3
Chondro-Inductive b-TPUe-Based Functionalized Scaffolds for Application in Cartilage Tissue Engineering.
Adv Healthc Mater. 2022 Oct;11(19):e2200251. doi: 10.1002/adhm.202200251. Epub 2022 Jul 29.
6
Green electrospinning for biomaterials and biofabrication.
Biofabrication. 2021 Jun 28;13(3). doi: 10.1088/1758-5090/ac0964.
7
Sustained Delivery of SB-431542, a Type I Transforming Growth Factor Beta-1 Receptor Inhibitor, to Prevent Arthrofibrosis.
Tissue Eng Part A. 2021 Nov;27(21-22):1411-1421. doi: 10.1089/ten.TEA.2021.0029. Epub 2021 May 12.
9
Cartilage Wear Particles Induce an Inflammatory Response Similar to Cytokines in Human Fibroblast-Like Synoviocytes.
J Orthop Res. 2019 Sep;37(9):1979-1987. doi: 10.1002/jor.24340. Epub 2019 May 17.
10
A Functional Tissue-Engineered Synovium Model to Study Osteoarthritis Progression and Treatment.
Tissue Eng Part A. 2019 Apr;25(7-8):538-553. doi: 10.1089/ten.TEA.2018.0142. Epub 2018 Oct 31.

本文引用的文献

2
Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering.
Macromol Biosci. 2010 Nov 10;10(11):1355-64. doi: 10.1002/mabi.201000124.
3
Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering.
Biomed Mater. 2010 Oct;5(5):055005. doi: 10.1088/1748-6041/5/5/055005. Epub 2010 Sep 9.
4
Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels.
Tissue Eng Part A. 2011 Feb;17(3-4):371-80. doi: 10.1089/ten.TEA.2009.0839. Epub 2010 Oct 25.
5
Age-related changes in the musculoskeletal system and the development of osteoarthritis.
Clin Geriatr Med. 2010 Aug;26(3):371-86. doi: 10.1016/j.cger.2010.03.002.
6
Chondrogenesis of synovium-derived mesenchymal stem cells in photopolymerizing hydrogel scaffolds.
J Biomater Sci Polym Ed. 2010;21(12):1653-67. doi: 10.1163/092050609X12531835454314. Epub 2010 Jun 9.
10
Passaged human chondrocytes accumulate extracellular matrix when induced by bovine chondrocytes.
J Tissue Eng Regen Med. 2010 Mar;4(3):233-41. doi: 10.1002/term.235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验