Suppr超能文献

通过高度多重化 RNA 测序进行单细胞转录组特征分析。

Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq.

机构信息

Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

出版信息

Genome Res. 2011 Jul;21(7):1160-7. doi: 10.1101/gr.110882.110. Epub 2011 May 4.

Abstract

Our understanding of the development and maintenance of tissues has been greatly aided by large-scale gene expression analysis. However, tissues are invariably complex, and expression analysis of a tissue confounds the true expression patterns of its constituent cell types. Here we describe a novel strategy to access such complex samples. Single-cell RNA-seq expression profiles were generated, and clustered to form a two-dimensional cell map onto which expression data were projected. The resulting cell map integrates three levels of organization: the whole population of cells, the functionally distinct subpopulations it contains, and the single cells themselves-all without need for known markers to classify cell types. The feasibility of the strategy was demonstrated by analyzing the transcriptomes of 85 single cells of two distinct types. We believe this strategy will enable the unbiased discovery and analysis of naturally occurring cell types during development, adult physiology, and disease.

摘要

通过大规模的基因表达分析,我们对组织的发育和维持有了更深入的了解。然而,组织始终是复杂的,对组织的表达分析混淆了其组成细胞类型的真实表达模式。在这里,我们描述了一种新的策略来获取这种复杂的样本。生成了单细胞 RNA-seq 表达谱,并进行聚类以形成二维细胞图谱,然后将表达数据投影到该图谱上。生成的细胞图谱整合了三个层次的组织:细胞的整个群体、它包含的功能不同的亚群以及单个细胞本身——所有这些都不需要已知的标记来对细胞类型进行分类。通过分析两种不同类型的 85 个单细胞的转录组,验证了该策略的可行性。我们相信,这种策略将能够在发育、成年生理和疾病过程中,实现对自然发生的细胞类型的无偏发现和分析。

相似文献

7
Universal Alternative Splicing of Noncoding Exons.非编码外显子的通用可变剪接。
Cell Syst. 2018 Feb 28;6(2):245-255.e5. doi: 10.1016/j.cels.2017.12.005. Epub 2018 Jan 24.
10
RNA-Seq: revelation of the messengers.RNA-Seq:信使的揭示。
Trends Plant Sci. 2013 Apr;18(4):175-9. doi: 10.1016/j.tplants.2013.02.001. Epub 2013 Mar 5.

引用本文的文献

3
Differential gene expression analysis in single-cell RNA sequencing data.单细胞RNA测序数据中的差异基因表达分析。
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2017 Nov;2017:202-207. doi: 10.1109/bibm.2017.8217650. Epub 2017 Dec 18.

本文引用的文献

3
Direct RNA sequencing.直接RNA测序
Nature. 2009 Oct 8;461(7265):814-8. doi: 10.1038/nature08390. Epub 2009 Sep 23.
6
mRNA-Seq whole-transcriptome analysis of a single cell.单细胞的mRNA测序全转录组分析
Nat Methods. 2009 May;6(5):377-82. doi: 10.1038/nmeth.1315. Epub 2009 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验