Suppr超能文献

单眼剥夺对视丘的稳态可塑性。

Homeostatic plasticity in the visual thalamus by monocular deprivation.

机构信息

Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA.

出版信息

J Neurosci. 2011 May 4;31(18):6842-9. doi: 10.1523/JNEUROSCI.1173-11.2011.

Abstract

Monocular deprivation (MD) is a classic paradigm for experience-dependent cortical plasticity. One form is known as homeostatic plasticity, in which neurons innervated by the deprived eye show a remarkable capacity to compensate for degraded visual signals in an attempt to stabilize network activity. Although the evidence supporting homeostatic plasticity in visual cortex is extensive, it remains unclear whether neurons in subcortical visual structures respond to MD in a similar manner. Here we examined whether cells in the dorsal lateral geniculate nucleus (dLGN), the thalamic relay between the retina and visual cortex, show similar forms of experience-dependent homeostatic plasticity following MD. Two-week-old mice were monocularly deprived for a period of 5-7 d and miniature EPSCs (mEPSCs) were obtained from cells located in dLGN regions receiving input from the deprived or nondeprived eye. We found that MD promotes increases in the frequency and amplitude of mEPSCs and were restricted to the monocular segment contralateral to the deprived eye. These changes were accompanied by an increase in the probability of glutamate release at corticothalamic terminals that arise from the deprived visual cortex. Our findings indicate that homeostatic synaptic regulation from MD extends beyond cortical circuitry and shed light on how the brain modulates and integrates activity in the face of altered sensory experience.

摘要

单眼剥夺(MD)是一种经典的经验依赖性皮质可塑性范例。其中一种形式称为同型可塑性,即被剥夺眼支配的神经元具有显著的补偿受损视觉信号的能力,试图稳定网络活动。尽管支持视觉皮层同型可塑性的证据广泛存在,但仍不清楚皮质下视觉结构中的神经元是否以类似的方式对 MD 做出反应。在这里,我们研究了在 MD 后,背外侧膝状体核(dLGN)中的细胞是否表现出类似的经验依赖性同型可塑性。将 2 周龄的小鼠进行单眼剥夺 5-7 天,并从接收来自剥夺眼或非剥夺眼输入的 dLGN 区域中的细胞获得微小兴奋性突触后电流(mEPSC)。我们发现 MD 促进了 mEPSC 的频率和幅度增加,并且仅限于与剥夺眼相对的单眼节段。这些变化伴随着来自剥夺视觉皮层的皮质丘脑终端谷氨酸释放概率的增加。我们的发现表明,MD 的同型突触调节不仅限于皮质回路,并揭示了大脑如何在面对改变的感觉体验时调节和整合活动。

相似文献

1
Homeostatic plasticity in the visual thalamus by monocular deprivation.
J Neurosci. 2011 May 4;31(18):6842-9. doi: 10.1523/JNEUROSCI.1173-11.2011.
2
Long-term Monocular Deprivation during Juvenile Critical Period Disrupts Binocular Integration in Mouse Visual Thalamus.
J Neurosci. 2020 Jan 15;40(3):585-604. doi: 10.1523/JNEUROSCI.1626-19.2019. Epub 2019 Nov 25.
3
Thalamic activity that drives visual cortical plasticity.
Nat Neurosci. 2009 Apr;12(4):390-2. doi: 10.1038/nn.2284. Epub 2009 Mar 1.
4
Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period.
J Comp Neurol. 2016 Sep 1;524(13):2643-53. doi: 10.1002/cne.23985. Epub 2016 Mar 6.
5
Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
Neuron. 2007 Jun 21;54(6):961-72. doi: 10.1016/j.neuron.2007.05.028.
6
Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat.
J Neurosci. 1999 Dec 15;19(24):10829-42. doi: 10.1523/JNEUROSCI.19-24-10829.1999.
7
Enhancement of vision by monocular deprivation in adult mice.
J Neurosci. 2006 Nov 8;26(45):11554-61. doi: 10.1523/JNEUROSCI.3396-06.2006.
8
Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens.
Brain Res Dev Brain Res. 1999 Apr 12;114(1):109-19. doi: 10.1016/s0165-3806(99)00027-9.
9
Short-term monocular deprivation alters early components of visual evoked potentials.
J Physiol. 2015 Oct 1;593(19):4361-72. doi: 10.1113/JP270950. Epub 2015 Jul 26.
10
Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys.
J Neurophysiol. 2001 May;85(5):2111-29. doi: 10.1152/jn.2001.85.5.2111.

引用本文的文献

1
Retinal and thalamic alterations in the 5xFAD mouse model of Alzheimer's disease.
PLoS One. 2025 Mar 3;20(3):e0319397. doi: 10.1371/journal.pone.0319397. eCollection 2025.
2
Visual activity enhances neuronal excitability in thalamic relay neurons.
Sci Adv. 2025 Jan 24;11(4):eadp4627. doi: 10.1126/sciadv.adp4627. Epub 2025 Jan 22.
3
Chronic modulation of cAMP signaling elicits synaptic scaling irrespective of activity.
iScience. 2024 Jun 5;27(7):110176. doi: 10.1016/j.isci.2024.110176. eCollection 2024 Jul 19.
4
Enhanced Synaptic Inhibition in the Dorsolateral Geniculate Nucleus in a Mouse Model of Glaucoma.
eNeuro. 2024 Jul 11;11(7). doi: 10.1523/ENEURO.0263-24.2024. Print 2024 Jul.
5
Specific connectivity optimizes learning in thalamocortical loops.
Cell Rep. 2024 Apr 23;43(4):114059. doi: 10.1016/j.celrep.2024.114059. Epub 2024 Apr 10.
6
Sensory eye dominance plasticity in the human adult visual cortex.
Front Neurosci. 2023 Aug 31;17:1250493. doi: 10.3389/fnins.2023.1250493. eCollection 2023.
7
Thalamic regulation of a visual critical period and motor behavior.
Cell Rep. 2023 Apr 25;42(4):112287. doi: 10.1016/j.celrep.2023.112287. Epub 2023 Mar 22.
8
9
Structural and Functional Plasticity in the Dorsolateral Geniculate Nucleus of Mice following Bilateral Enucleation.
Neuroscience. 2022 Apr 15;488:44-59. doi: 10.1016/j.neuroscience.2022.01.029. Epub 2022 Feb 4.
10
Mechanisms of Plasticity in Subcortical Visual Areas.
Cells. 2021 Nov 13;10(11):3162. doi: 10.3390/cells10113162.

本文引用的文献

1
Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse.
J Physiol. 2011 Feb 15;589(Pt 4):919-37. doi: 10.1113/jphysiol.2010.202499. Epub 2010 Dec 20.
2
Neocortical layer 6, a review.
Front Neuroanat. 2010 Mar 31;4:13. doi: 10.3389/fnana.2010.00013. eCollection 2010.
3
Synaptic development of the mouse dorsal lateral geniculate nucleus.
J Comp Neurol. 2010 Mar 1;518(5):622-35. doi: 10.1002/cne.22223.
4
Synaptic scaling requires the GluR2 subunit of the AMPA receptor.
J Neurosci. 2009 May 20;29(20):6479-89. doi: 10.1523/JNEUROSCI.3753-08.2009.
5
Anatomical origins of ocular dominance in mouse primary visual cortex.
Neuroscience. 2009 Jun 30;161(2):561-71. doi: 10.1016/j.neuroscience.2009.03.045. Epub 2009 Mar 25.
6
The self-tuning neuron: synaptic scaling of excitatory synapses.
Cell. 2008 Oct 31;135(3):422-35. doi: 10.1016/j.cell.2008.10.008.
7
Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex.
Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):357-67. doi: 10.1098/rstb.2008.0198.
8
Emerging views of corticothalamic function.
Curr Opin Neurobiol. 2008 Aug;18(4):403-7. doi: 10.1016/j.conb.2008.09.002. Epub 2008 Oct 6.
9
Mechanisms underlying development of visual maps and receptive fields.
Annu Rev Neurosci. 2008;31:479-509. doi: 10.1146/annurev.neuro.31.060407.125533.
10
Direct measurement of somatic voltage clamp errors in central neurons.
Nat Neurosci. 2008 Jul;11(7):790-8. doi: 10.1038/nn.2137. Epub 2008 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验