Suppr超能文献

四肢瘫痪患者模拟手臂运动的连续神经元集合控制。

Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

出版信息

J Neural Eng. 2011 Jun;8(3):034003. doi: 10.1088/1741-2560/8/3/034003. Epub 2011 May 5.

Abstract

Functional electrical stimulation (FES), the coordinated electrical activation of multiple muscles, has been used to restore arm and hand function in people with paralysis. User interfaces for such systems typically derive commands from mechanically unrelated parts of the body with retained volitional control, and are unnatural and unable to simultaneously command the various joints of the arm. Neural interface systems, based on spiking intracortical signals recorded from the arm area of motor cortex, have shown the ability to control computer cursors, robotic arms and individual muscles in intact non-human primates. Such neural interface systems may thus offer a more natural source of commands for restoring dexterous movements via FES. However, the ability to use decoded neural signals to control the complex mechanical dynamics of a reanimated human limb, rather than the kinematics of a computer mouse, has not been demonstrated. This study demonstrates the ability of an individual with long-standing tetraplegia to use cortical neuron recordings to command the real-time movements of a simulated dynamic arm. This virtual arm replicates the dynamics associated with arm mass and muscle contractile properties, as well as those of an FES feedback controller that converts user commands into the required muscle activation patterns. An individual with long-standing tetraplegia was thus able to control a virtual, two-joint, dynamic arm in real time using commands derived from an existing human intracortical interface technology. These results show the feasibility of combining such an intracortical interface with existing FES systems to provide a high-performance, natural system for restoring arm and hand function in individuals with extensive paralysis.

摘要

功能性电刺激(FES),即协调多个肌肉的电激活,已被用于恢复瘫痪患者的手臂和手部功能。此类系统的用户界面通常从保留自主控制的身体机械上不相关的部分获取命令,这些命令不自然,并且无法同时控制手臂的各个关节。基于从运动皮层手臂区域记录的尖峰皮层内信号的神经接口系统已显示出控制计算机光标、机器人手臂和完整非人类灵长类动物中单个肌肉的能力。因此,这种神经接口系统可能为通过 FES 恢复灵巧运动提供了更自然的命令源。然而,解码神经信号以控制重新激活的人类肢体的复杂机械动力学,而不是计算机鼠标的运动学的能力尚未得到证明。本研究证明了一位长期四肢瘫痪患者使用皮层神经元记录来实时控制模拟动态手臂运动的能力。这个虚拟手臂复制了与手臂质量和肌肉收缩特性相关的动力学,以及将用户命令转换为所需肌肉激活模式的 FES 反馈控制器的动力学。一位长期四肢瘫痪患者因此能够使用源自现有人类皮层内接口技术的命令实时控制一个虚拟的、两关节的动态手臂。这些结果表明,将这种皮层内接口与现有的 FES 系统相结合以提供用于恢复广泛瘫痪患者手臂和手部功能的高性能、自然系统是可行的。

相似文献

1
Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia.
J Neural Eng. 2011 Jun;8(3):034003. doi: 10.1088/1741-2560/8/3/034003. Epub 2011 May 5.
4
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.
5
Intra-day signal instabilities affect decoding performance in an intracortical neural interface system.
J Neural Eng. 2013 Jun;10(3):036004. doi: 10.1088/1741-2560/10/3/036004. Epub 2013 Apr 10.
6
Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations.
J Neural Eng. 2015 Feb;12(1):016011. doi: 10.1088/1741-2560/12/1/016011. Epub 2014 Dec 16.
7
Brain-controlled muscle stimulation for the restoration of motor function.
Neurobiol Dis. 2015 Nov;83:180-90. doi: 10.1016/j.nbd.2014.10.014. Epub 2014 Oct 28.
8
An electrocorticographic brain interface in an individual with tetraplegia.
PLoS One. 2013;8(2):e55344. doi: 10.1371/journal.pone.0055344. Epub 2013 Feb 6.
9
Reconnecting the Hand and Arm to the Brain: Efficacy of Neural Interfaces for Sensorimotor Restoration After Tetraplegia.
Neurosurgery. 2024 Apr 1;94(4):864-874. doi: 10.1227/neu.0000000000002769. Epub 2023 Nov 20.

引用本文的文献

2
Learning to Control Complex Robots Using High-Dimensional Body-Machine Interfaces.
ACM Trans Hum Robot Interact. 2024 Sep;13(3). doi: 10.1145/3630264. Epub 2024 Aug 26.
3
4
Why brain organoids are not conscious yet.
Patterns (N Y). 2024 Jun 24;5(8):101011. doi: 10.1016/j.patter.2024.101011. eCollection 2024 Aug 9.
5
Machine-learning-based coordination of powered ankle-foot orthosis and functional electrical stimulation for gait control.
Front Bioeng Biotechnol. 2024 Jan 10;11:1272693. doi: 10.3389/fbioe.2023.1272693. eCollection 2023.
7
Semi-Implantable Bioelectronics.
Nanomicro Lett. 2022 May 28;14(1):125. doi: 10.1007/s40820-022-00818-4.
10
The science and engineering behind sensitized brain-controlled bionic hands.
Physiol Rev. 2022 Apr 1;102(2):551-604. doi: 10.1152/physrev.00034.2020. Epub 2021 Sep 20.

本文引用的文献

1
Long term in vitro stability of fully integrated wireless neural interfaces based on Utah slant electrode array.
Appl Phys Lett. 2010 Feb 15;96(7):73702. doi: 10.1063/1.3318251. Epub 2010 Feb 17.
3
Active microelectronic neurosensor arrays for implantable brain communication interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):339-45. doi: 10.1109/TNSRE.2009.2024310. Epub 2009 Jun 5.
4
Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
Med Biol Eng Comput. 2009 May;47(5):533-42. doi: 10.1007/s11517-009-0479-3. Epub 2009 Apr 3.
5
A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements.
IEEE Trans Biomed Eng. 2009 Apr;56(4):941-8. doi: 10.1109/TBME.2008.2005946. Epub 2008 Sep 26.
6
Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia.
J Neural Eng. 2008 Dec;5(4):455-76. doi: 10.1088/1741-2560/5/4/010. Epub 2008 Nov 18.
8
Direct control of paralysed muscles by cortical neurons.
Nature. 2008 Dec 4;456(7222):639-42. doi: 10.1038/nature07418. Epub 2008 Oct 15.
9
Cortical control of a prosthetic arm for self-feeding.
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.
10
Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions.
Spinal Cord. 2008 Apr;46(4):255-74. doi: 10.1038/sj.sc.3102091. Epub 2007 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验